dc.contributor.author
Creutzig, Felix
dc.contributor.author
Wohlgemuth, Sandra
dc.contributor.author
Stumpner, Andreas
dc.contributor.author
Benda, Jan
dc.contributor.author
Ronacher, Bernhard
dc.contributor.author
Herz, Andreas V. M.
dc.date.accessioned
2019-10-21T13:50:31Z
dc.date.available
2019-10-21T13:50:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25765
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25526
dc.description.abstract
Acoustic communication often involves complex sound motifs in which the relative durations of individual elements, but not their absolute durations, convey meaning. Decoding such signals requires an explicit or implicit calculation of the ratios between time intervals. Using grasshopper communication as a model, we demonstrate how this seemingly difficult computation can be solved in real time by a small set of auditory neurons. One of these cells, an ascending interneuron, generates bursts of action potentials in response to the rhythmic syllable–pause structure of grasshopper calls. Our data show that these bursts are preferentially triggered at syllable onset; the number of spikes within the burst is linearly correlated with the duration of the preceding pause. Integrating the number of spikes over a fixed time window therefore leads to a total spike count that reflects the characteristic syllable-to-pause ratio of the species while being invariant to playing back the call faster or slower. Such a timescale-invariant recognition is essential under natural conditions, because grasshoppers do not thermoregulate; the call of a sender sitting in the shade will be slower than that of a grasshopper in the sun. Our results show that timescale-invariant stimulus recognition can be implemented at the single-cell level without directly calculating the ratio between pulse and interpulse durations.
en
dc.format.extent
6 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
auditory system
en
dc.subject
acoustic communication
en
dc.subject
temporal pattern
en
dc.subject
invariant object recognition
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Timescale-invariant representation of acoustic communication signals by a bursting neuron
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1523/JNEUROSCI.0599-08.2009
dcterms.bibliographicCitation.journaltitle
The journal of neuroscience
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
2575
dcterms.bibliographicCitation.pageend
2580
dcterms.bibliographicCitation.volume
29
dcterms.bibliographicCitation.url
https://doi.org/10.1523/JNEUROSCI.0599-08.2009
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie / Arbeitsbereich Verhaltensbiologie & Neurophysiologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0270-6474
dcterms.isPartOf.eissn
1529-2401