dc.contributor.author
Haberbosch, Linus
dc.contributor.author
Datta, Abhishek
dc.contributor.author
Thomas, Chris
dc.contributor.author
Jooß, Andreas
dc.contributor.author
Köhn, Arvid
dc.contributor.author
Rönnefarth, Maria
dc.contributor.author
Scholz, Michael
dc.contributor.author
Brandt, Stephan A.
dc.contributor.author
Schmidt, Sein
dc.date.accessioned
2019-10-05T07:16:18Z
dc.date.available
2019-10-05T07:16:18Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25687
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25451
dc.description.abstract
Background:
While alternating current stimulation (ACS) is gaining relevance as a tool in research and approaching clinical applications, its mechanisms of action remain unclear. A review by Schutter and colleagues argues for a retinal origin of transcranial ACS' neuromodulatory effects. Interestingly, there is an alternative application form of ACS specifically targeting α-oscillations in the visual cortex via periorbital electrodes (retinofugal alternating current stimulation, rACS). To further compare these two methods and investigate retinal effects of ACS, we first aim to establish the safety and tolerability of rACS.
Objective:
The goal of our research was to evaluate the safety of rACS via finite-element modeling, theoretical safety limits and subjective report.
Methods:
20 healthy subjects were stimulated with rACS as well as photic stimulation and reported adverse events following stimulation. We analyzed stimulation parameters at electrode level as well as distributed metric estimates from an ultra-high spatial resolution magnetic resonance imaging (MRI)-derived finite element human head model and compared them to existing safety limits.
Results:
Topographical modeling revealed the highest current densities in the anterior visual pathway, particularly retina and optic nerve. Stimulation parameters and finite element modeling estimates of rACS were found to be well below existing safety limits. No serious adverse events occurred.
Conclusion:
Our findings are in line with existing safety guidelines for retinal and neural damage and establish the tolerability and feasibility of rACS. In comparison to tACS, retinofugal stimulation of the visual cortex provides an anatomically circumscribed model to systematically study the mechanisms of action of ACS.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
adverse events
en
dc.subject
electrical stimulation
en
dc.subject
finite element modeling
en
dc.subject
retinofugal alternating current stimulation
en
dc.subject
tolerability
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Safety Aspects, Tolerability and Modeling of Retinofugal Alternating Current Stimulation
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
783
dcterms.bibliographicCitation.doi
10.3389/fnins.2019.00783
dcterms.bibliographicCitation.journaltitle
Frontiers in Neuroscience
dcterms.bibliographicCitation.originalpublishername
Frontiers Media S.A.
dcterms.bibliographicCitation.volume
13
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
31440126
dcterms.isPartOf.eissn
1662-453X