dc.contributor.author
Ryo, Masahiro
dc.contributor.author
Rillig, Matthias C.
dc.date.accessioned
2019-09-24T14:18:51Z
dc.date.available
2019-09-24T14:18:51Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25627
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25393
dc.description.abstract
Most statistical models assume linearity and few variable interactions, even though real‐world ecological patterns often result from nonlinear and highly interactive processes. We here introduce a set of novel empirical modeling techniques which can address this mismatch: statistically reinforced machine learning. We demonstrate the behaviors of three techniques (conditional inference tree, model‐based tree, and permutation‐based random forest) by analyzing an artificially generated example dataset that contains patterns based on nonlinearity and variable interactions. The results show the potential of statistically reinforced machine learning algorithms to detect nonlinear relationships and higher‐order interactions. Estimation reliability for any technique, however, depended on sample size. The applications of statistically reinforced machine learning approaches would be particularly beneficial for investigating (1) novel patterns for which shapes cannot be assumed a priori, (2) higher‐order interactions which are often overlooked in parametric statistics, (3) context dependency where patterns change depending on other conditions, (4) significance and effect sizes of variables while taking nonlinearity and variable interactions into account, and (5) a hypothesis using parametric statistics after identifying patterns using statistically reinforced machine learning techniques.
en
dc.format.extent
16 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
biodiversity
en
dc.subject
context dependency
en
dc.subject
ecological surprises
en
dc.subject
higher‐order interactions
en
dc.subject
machine learning
en
dc.subject
macroecology
en
dc.subject
microbial ecology
en
dc.subject
random forest
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::577 Ökologie
dc.title
Statistically reinforced machine learning for nonlinear patterns and variable interactions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e01976
dcterms.bibliographicCitation.doi
10.1002/ecs2.1976
dcterms.bibliographicCitation.journaltitle
Ecosphere
dcterms.bibliographicCitation.number
11
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1002/ecs2.1976
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Biologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2150-8925