The recent advances in microscopy and scanning techniques enabled the image analysis of archaeological objects in a high resolution. From the direct measurements in images, shapes and related parameters of the structural elements of interest can be derived. In this study, image analysis in 2D/3D is applied to archaeological ceramics, in order to obtain clues about the ceramic pastes, firing and shaping techniques. Images were acquired by the polarized light microscope, scanning electron microscopy (SEM) and 3D micro X-ray computed tomography (µ-CT) and segmented using Matlab. 70 ceramic sherds excavated at Ransyrt 1 (Middle-Late Bronze Age) and Kabardinka 2 (late Bronze–early Iron Age), located in in the North Caucasian mountains, Russia, were investigated. The size distribution, circularity and sphericity of sand grains in the ceramics show site specific difference as well as variations within a site. The sphericity, surface area, volume and Euler characteristic of pores show the existence of various pyrometamorphic states between the ceramics and within a ceramic. Using alignments of pores and grains, similar pottery shaping techniques are identified for both sites. These results show that the image analysis of archaeological ceramics can provide detailed information about the prehistoric ceramic production technologies with fast data availability.