dc.contributor.author
Verbiest, Gerard J.
dc.contributor.author
Kirchhof, Jan N.
dc.contributor.author
Sonntag, Jens
dc.contributor.author
Goldsche, Matthias
dc.contributor.author
Khodkov, Tymofiy
dc.contributor.author
Stampfer, Christoph
dc.date.accessioned
2019-09-10T08:54:47Z
dc.date.available
2019-09-10T08:54:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25505
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-4209
dc.description.abstract
Ultrasound detection is one of the most-important nondestructive subsurface characterization tools for materials, the goal of which is to laterally resolve the subsurface structure with nanometer or even atomic resolution. In recent years, graphene resonators have attracted attention for their use in loudspeakers and ultrasound radios, showing their potential for realizing communication systems with air-carried ultrasound. Here, we show a graphene resonator that detects ultrasound vibrations propagating through the substrate on which it was fabricated. We ultimately achieve a resolution of ∼7 pm/ in ultrasound amplitude at frequencies up to 100 MHz. Thanks to an extremely high nonlinearity in the mechanical restoring force, the resonance frequency itself can also be used for ultrasound detection. We observe a shift of 120 kHz at a resonance frequency of 65 MHz for an induced vibration amplitude of 100 pm with a resolution of 25 pm. Remarkably, the nonlinearity also explains the generally observed asymmetry in the resonance frequency tuning of the resonator when it is pulled upon with an electrostatic gate. This work puts forward a sensor design that fits onto an atomic force microscope cantilever and therefore promises direct ultrasound detection at the nanoscale for nondestructive subsurface characterization.
en
dc.format.extent
6 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
ultrasound detection
en
dc.subject
scanning probe microscopy
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Detecting Ultrasound Vibrations with Graphene Resonators
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1021/acs.nanolett.8b02036
dcterms.bibliographicCitation.journaltitle
Nano letters
dcterms.bibliographicCitation.number
8
dcterms.bibliographicCitation.pagestart
5132
dcterms.bibliographicCitation.pageend
5137
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.1021/acs.nanolett.8b02036
refubium.affiliation
Physik
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1530-6984
dcterms.isPartOf.eissn
1530-6992