dc.contributor.author
Papazoglou, Sebastian
dc.contributor.author
Streubel, Tobias
dc.contributor.author
Ashtarayeh, Mohammad
dc.contributor.author
Pine, Kerrin J.
dc.contributor.author
Edwards, Luke J.
dc.contributor.author
Brammerloh, Malte
dc.contributor.author
Kirilina, Evgeniya
dc.contributor.author
Morawski, Markus
dc.contributor.author
Jäger, Carsten
dc.contributor.author
Geyer, Stefan
dc.date.accessioned
2019-08-14T12:49:06Z
dc.date.available
2019-08-14T12:49:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25290
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-3993
dc.description.abstract
Purpose
To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of R*2 using a single gradient‐recalled echo (GRE) measurement.
Methods
The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of R*2. The estimated parameters were compared to the classical, mono‐exponential decay model for R*2 in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R*2, it was compared to the established phenomenological method for separating R*2 into orientation‐dependent and ‐independent parts.
Results
Using the phenomenological method on the classical signal model, the well‐known separation of R*2 into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed.
Conclusions
Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of R*2 using only a single GRE measurement.
en
dc.format.extent
8 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
apparent transverse relaxation rate
en
dc.subject
biophysical signal model
en
dc.subject
gradient‐recalled echo
en
dc.subject
orientation dependence
en
dc.subject
white matter
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::158 Angewandte Psychologie
dc.title
Biophysically motivated efficient estimation of the spatially isotropic R*2 component from a single gradient‐recalled echo measurement
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1002/mrm.27863
dcterms.bibliographicCitation.journaltitle
Magnetic Resonance in Medicine
dcterms.bibliographicCitation.number
5
dcterms.bibliographicCitation.pagestart
1804
dcterms.bibliographicCitation.pageend
1811
dcterms.bibliographicCitation.volume
82
dcterms.bibliographicCitation.url
https://doi.org/10.1002/mrm.27863
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.affiliation.other
Arbeitsbereich Neurocomputation and Neuroimaging
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
1522-2594
refubium.resourceType.provider
WoS-Alert