dc.contributor.author
Rettig, Anika
dc.contributor.author
Haase, Tobias
dc.contributor.author
Pletnyov, Alexandr
dc.contributor.author
Kohl, Benjamin
dc.contributor.author
Ertel, Wolfgang
dc.contributor.author
Kleist, Max von
dc.contributor.author
Sunkara, Vikram
dc.date.accessioned
2019-07-31T10:17:16Z
dc.date.available
2019-07-31T10:17:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25174
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-3876
dc.description.abstract
Muscle fibre cross-sectional area (CSA) is an important biomedical measure used to determine the structural composition of skeletal muscle, and it is relevant for tackling research questions in many different fields of research. To date, time consuming and tedious manual delineation of muscle fibres is often used to determine the CSA. Few methods are able to automatically detect muscle fibres in muscle fibre cross-sections to quantify CSA due to challenges posed by variation of brightness and noise in the staining images. In this paper, we introduce the supervised learning-computer vision combined pipeline (SLCV), a robust semi-automatic pipeline for muscle fibre detection, which combines supervised learning (SL) with computer vision (CV). SLCV is adaptable to different staining methods and is quickly and intuitively tunable by the user. We are the first to perform an error analysis with respect to cell count and area, based on which we compare SLCV to the best purely CV-based pipeline in order to identify the contribution of SL and CV steps to muscle fibre detection. Our results obtained on 27 fluorescence-stained cross-sectional images of varying staining quality suggest that combining SL and CV performs significantly better than both SL-based and CV-based methods with regards to both the cell separation- and the area reconstruction error. Furthermore, applying SLCV to our test set images yielded fibre detection results of very high quality, with average sensitivity values of 0.93 or higher on different cluster sizes and an average Dice similarity coefficient of 0.9778.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
Supervised learning
en
dc.subject
Muscle fibre cross-sectional area
en
dc.subject
Computer vision
en
dc.subject
muscle fibre detection
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::615 Pharmakologie, Therapeutik
dc.title
SLCV–a supervised learning—computer vision combined strategy for automated muscle fibre detection in cross-sectional images
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e7053
dcterms.bibliographicCitation.doi
10.7717/peerj.7053
dcterms.bibliographicCitation.journaltitle
PeerJ
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.7717/peerj.7053
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin und der DFG gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2167-8359