dc.contributor.author
Kühnlein, Christian
dc.contributor.author
Deconinck, Willem
dc.contributor.author
Klein, Rupert
dc.contributor.author
Malardel, Sylvie
dc.contributor.author
Piotrowski, Zbigniew P.
dc.contributor.author
Smolarkiewicz, Piotr K.
dc.contributor.author
Szmelter, Joanna
dc.contributor.author
Wedi, Nils P.
dc.date.accessioned
2019-07-19T08:52:59Z
dc.date.available
2019-07-19T08:52:59Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25122
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2877
dc.description.abstract
We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS.
We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.
en
dc.format.extent
26 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
numerical weather prediction
en
dc.subject
global atmospheric model
en
dc.subject
Integrated Forecasting System
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.title
FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.5194/gmd-12-651-2019
dcterms.bibliographicCitation.journaltitle
Geoscientific model development
dcterms.bibliographicCitation.pagestart
651
dcterms.bibliographicCitation.pageend
676
dcterms.bibliographicCitation.volume
12
dcterms.bibliographicCitation.url
https://doi.org/10.5194/gmd-12-651-2019
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1991-959X
dcterms.isPartOf.eissn
1991-9603
refubium.resourceType.provider
WoS-Alert