To understand processes in urban environments, such as urban energy fluxes or surface temperature patterns, it is important to map urban surface materials. Airborne imaging spectroscopy data have been successfully used to identify urban surface materials mainly based on unmixing algorithms. Upcoming spaceborne Imaging Spectrometers (IS), such as the Environmental Mapping and Analysis Program (EnMAP), will reduce the time and cost-critical limitations of airborne systems for Earth Observation (EO). However, the spatial resolution of all operated and planned IS in space will not be higher than 20 to 30 m and, thus, the detection of pure Endmember (EM) candidates in urban areas, a requirement for spectral unmixing, is very limited. Gradient analysis could be an alternative method for retrieving urban surface material compositions in pixels from spaceborne IS. The gradient concept is well known in ecology to identify plant species assemblages formed by similar environmental conditions but has never been tested for urban materials. However, urban areas also contain neighbourhoods with similar physical, compositional and structural characteristics. Based on this assumption, this study investigated (1) whether cover fractions of surface materials change gradually in urban areas and (2) whether these gradients can be adequately mapped and interpreted using imaging spectroscopy data (e.g. EnMAP) with 30 m spatial resolution. Similarities of material compositions were analysed on the basis of 153 systematically distributed samples on a detailed surface material map using Detrended Correspondence Analysis (DCA). Determined gradient scores for the first two gradients were regressed against the corresponding mean reflectance of simulated EnMAP spectra using Partial Least Square regression models. Results show strong correlations with R2 = 0.85 and R2 = 0.71 and an RMSE of 0.24 and 0.21 for the first and second axis, respectively. The subsequent mapping of the first gradient reveals patterns that correspond to the transition from predominantly vegetation classes to the dominance of artificial materials. Patterns resulting from the second gradient are associated with surface material compositions that are related to finer structural differences in urban structures. The composite gradient map shows patterns of common surface material compositions that can be related to urban land use classes such as Urban Structure Types (UST). By linking the knowledge of typical material compositions with urban structures, gradient analysis seems to be a powerful tool to map characteristic material compositions in 30 m imaging spectroscopy data of urban areas.