dc.contributor.author
Köhling, Sebastian
dc.contributor.author
Blaszkiewicz, Joanna
dc.contributor.author
Ruiz-Gómez, Gloria
dc.contributor.author
Fernández-Bachiller, María Isabel
dc.contributor.author
Lemmnitzer, Katharina
dc.contributor.author
Panitz, Nydia
dc.contributor.author
Beck-Sickinger, Annette G.
dc.contributor.author
Schiller, Jürgen
dc.contributor.author
Pisabarro, M. Teresa
dc.contributor.author
Rademann, Jörg
dc.date.accessioned
2019-07-18T08:55:35Z
dc.date.available
2019-07-18T08:55:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25110
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2865
dc.description.abstract
Binding of sulfated glycosaminoglycans (GAG) to a wide spectrum of extracellular regulatory proteins is crucial for physiological processes such as cell growth, migration, tissue homeostasis and repair. Thus, GAG derivatives exhibit great relevance in the development of innovative biomaterials for tissue regeneration therapies. We present a synthetic strategy for the preparation of libraries of defined sulfated oligohyaluronans as model GAG systematically varied in length, sulfation pattern and anomeric substitution in order to elucidate the effects of these parameters on GAG recognition by regulatory proteins. Through an experimental and computational approach using fluorescence polarization, ITC, docking and molecular dynamics simulations we investigate the binding of these functionalized GAG derivatives to ten representative regulatory proteins including IL-8, IL-10, BMP-2, sclerostin, TIMP-3, CXCL-12, TGF-β, FGF-1, FGF-2, and AT-III, and we establish structure–activity relationships for GAG recognition. Binding is mainly driven by enthalpy with only minor entropic contributions. In several cases binding is determined by GAG length, and in all cases by the position and number of sulfates. Affinities strongly depend on the anomeric modification of the GAG. Highest binding affinities are effected by anomeric functionalization with large fluorophores and by GAG dimerization. Our experimental and theoretical results suggest that the diversity of GAG binding sites and modes is responsible for the observed high affinities and other binding features. The presented new insights into GAG–protein recognition will be of relevance to guide the design of GAG derivatives with customized functions for the engineering of new biomaterials.
en
dc.format.extent
13 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
dc.subject
oligohyaluronans
en
dc.subject
GAG–protein binding
en
dc.subject
tissue regeneration
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Syntheses of defined sulfated oligohyaluronans reveal structural effects, diversity and thermodynamics of GAG–protein binding
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/C8SC03649G
dcterms.bibliographicCitation.journaltitle
Chemical science
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
866
dcterms.bibliographicCitation.pageend
878
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/ 10.1039/C8SC03649G
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.affiliation.other
Institut für Pharmazie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2041-6520
dcterms.isPartOf.eissn
2041-6539
refubium.resourceType.provider
WoS-Alert