dc.contributor.author
Winter, Robin
dc.contributor.author
Montanari, Floriane
dc.contributor.author
Noé, Frank
dc.contributor.author
Clevert, Djork-Arné
dc.date.accessioned
2019-07-18T07:14:30Z
dc.date.available
2019-07-18T07:14:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/25102
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2857
dc.description.abstract
There has been a recent surge of interest in using machine learning across chemical space in order to predict properties of molecules or design molecules and materials with the desired properties. Most of this work relies on defining clever feature representations, in which the chemical graph structure is encoded in a uniform way such that predictions across chemical space can be made. In this work, we propose to exploit the powerful ability of deep neural networks to learn a feature representation from low-level encodings of a huge corpus of chemical structures. Our model borrows ideas from neural machine translation: it translates between two semantically equivalent but syntactically different representations of molecular structures, compressing the meaningful information both representations have in common in a low-dimensional representation vector. Once the model is trained, this representation can be extracted for any new molecule and utilized as a descriptor. In fair benchmarks with respect to various human-engineered molecular fingerprints and graph-convolution models, our method shows competitive performance in modelling quantitative structure–activity relationships in all analysed datasets. Additionally, we show that our descriptor significantly outperforms all baseline molecular fingerprints in two ligand-based virtual screening tasks. Overall, our descriptors show the most consistent performances in all experiments. The continuity of the descriptor space and the existence of the decoder that permits deducing a chemical structure from an embedding vector allow for exploration of the space and open up new opportunities for compound optimization and idea generation.
en
dc.format.extent
10 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
molecular descriptors
en
dc.subject
chemical representations
en
dc.subject
machine learning
en
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::004 Datenverarbeitung; Informatik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.1039/C8SC04175J
dcterms.bibliographicCitation.journaltitle
Chemical Science
dcterms.bibliographicCitation.pagestart
1692
dcterms.bibliographicCitation.pageend
1701
dcterms.bibliographicCitation.volume
10
dcterms.bibliographicCitation.url
https://doi.org/10.1039/C8SC04175J
refubium.affiliation
Mathematik und Informatik
refubium.affiliation.other
Institut für Mathematik / Arbeitsgruppe Computational Molecular Biology
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.eissn
2041-6539
refubium.resourceType.provider
WoS-Alert