dc.contributor.author
Kühn, Clemens
dc.contributor.author
Checa, Sara
dc.date.accessioned
2019-06-12T09:48:07Z
dc.date.available
2019-06-12T09:48:07Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/24743
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2503
dc.description.abstract
Sprouting angiogenesis is a necessary process in regeneration and development as well as in tumorigenesis. VEGF-A is the main pro-angiogenic chemoattractant and it can bind to the decoy receptor VEGFR1 or to VEGFR2 to induce sprouting. Active sprout cells express Dll4, which binds to Notch1 on neighboring cells, in turn inhibiting VEGFR2 expression. It is known that the balance between VEGFR2 and VEGFR1 determines tip selection and network architecture, however the quantitative interrelationship of the receptors and their interrelated balances, also with relation to Dll4-Notch1 signaling, remains yet largely unknown. Here, we present an agent-based computer model of sprouting angiogenesis, integrating VEGFR1 and VEGFR2 in a detailed model of cellular signaling. Our model reproduces experimental data on VEGFR1 knockout. We show that soluble VEGFR1 improves the efficiency of angiogenesis by directing sprouts away from existing cells over a wide range of parameters. Our analysis unravels the relevance of the stability of the active notch intracellular domain as a dominating hub in this regulatory network. Our analysis quantitatively dissects the regulatory interactions in sprouting angiogenesis. Because we use a detailed model of intracellular signaling, the results of our analysis are directly linked to biological entities. We provide our computational model and simulation engine for integration in complementary modeling approaches.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
angiogenesis
en
dc.subject
lateral inhibition
en
dc.subject
computational model
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Computational Modeling to Quantify the Contributions of VEGFR1, VEGFR2, and Lateral Inhibition in Sprouting Angiogenesis
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
288
dcterms.bibliographicCitation.doi
10.3389/fphys.2019.00288
dcterms.bibliographicCitation.journaltitle
Frontiers in Physiology
dcterms.bibliographicCitation.originalpublishername
Frontiers Media S.A.
dcterms.bibliographicCitation.volume
10
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
30971939
dcterms.isPartOf.issn
1664-042X