dc.contributor.author
Theis, Anne-Kathrin
dc.contributor.author
Rózsa, Balázs
dc.contributor.author
Katona, Gergely
dc.contributor.author
Schmitz, Dietmar
dc.contributor.author
Johenning, Friedrich W.
dc.date.accessioned
2019-04-16T09:44:45Z
dc.date.available
2019-04-16T09:44:45Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/24431
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-2203
dc.description.abstract
The majority of excitatory synapses are located on dendritic spines of cortical glutamatergic neurons. In spines, compartmentalized Ca2+ signals transduce electrical activity into specific long-term biochemical and structural changes. Action potentials (APs) propagate back into the dendritic tree and activate voltage gated Ca2+ channels (VGCCs). For spines, this global mode of spine Ca2+ signaling is a direct biochemical feedback of suprathreshold neuronal activity. We previously demonstrated that backpropagating action potentials (bAPs) result in long-term enhancement of spine VGCCs. This activity-dependent VGCC plasticity results in a large interspine variability of VGCC Ca2+ influx. Here, we investigate how spine VGCCs affect glutamatergic synaptic transmission. We combined electrophysiology, two-photon Ca2+ imaging and two-photon glutamate uncaging in acute brain slices from rats. T-and R-type VGCCs were the dominant depolarization-associated Ca2+ C conductances in dendritic spines of excitatory layer 2 neurons and do not affect synaptic excitatory postsynaptic potentials (EPSPs) measured at the soma. Using two-photon glutamate uncaging, we compared the properties of glutamatergic synapses of single spines that express different levels of VGCCs. While VGCCs contributed to EPSP mediated Ca2+ influx, the amount of EPSP mediated Ca2+ influx is not determined by spine VGCC expression. On a longer timescale, the activation of VGCCs by bAP bursts results in downregulation of spine NMDAR function.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
dendritic spines
en
dc.subject
two-photon microscopy
en
dc.subject
synaptic transmission
en
dc.subject
voltage gated Ca2+ channels (VGCCs)
en
dc.subject
metaplasticity
en
dc.subject
homeostatic synaptic plasticity
en
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit::610 Medizin und Gesundheit
dc.title
Voltage Gated Calcium Channel Activation by Backpropagating Action Potentials Downregulates NMDAR Function
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
109
dcterms.bibliographicCitation.doi
10.3389/fncel.2018.00109
dcterms.bibliographicCitation.journaltitle
Frontiers in Cellular Neuroscience
dcterms.bibliographicCitation.originalpublishername
Frontiers Media S.A.
dcterms.bibliographicCitation.volume
12
refubium.affiliation
Charité - Universitätsmedizin Berlin
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
29755321
dcterms.isPartOf.issn
1662-5102