dc.contributor.author
Brinkert, Katharina
dc.contributor.author
Richter, Matthias H.
dc.contributor.author
Akay, Ömer
dc.contributor.author
Giersig, Michael
dc.contributor.author
Fountaine, Katherine T.
dc.contributor.author
Lewerenz, Hans-Joachim
dc.date.accessioned
2019-03-06T09:43:31Z
dc.date.available
2019-03-06T09:43:31Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/24066
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1840
dc.description.abstract
Photoelectrochemical (PEC) cells offer the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The pursued design involves technologically advanced III–V semiconductor absorbers coupled via an interfacial film to an electrocatalyst layer. These systems have been prepared by in situ surface transformations in electrochemical environments. High activity nanostructured electrocatalysts are required for an efficiently operating cell, optimized in their optical and electrical properties. We demonstrate that shadow nanosphere lithography (SNL) is an auspicious tool to systematically create three-dimensional electrocatalyst nanostructures on the semiconductor photoelectrode through controlling their morphology and optical properties. First results are demonstrated by means of the photoelectrochemical production of hydrogen on p-type InP photocathodes where hitherto applied photoelectrodeposition and SNL-deposited Rh electrocatalysts are compared based on their J–V and spectroscopic behavior. We show that smaller polystyrene particle masks achieve higher defect nanostructures of rhodium on the photoelectrode which leads to a higher catalytic activity and larger short circuit currents. Structural analyses including HRSEM and the analysis of the photoelectrode surface composition by using photoelectron spectroscopy support and complement the photoelectrochemical observations. The optical performance is further compared to theoretical models of the nanostructured photoelectrodes on light scattering and propagation.
en
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Photoelectrochemical cells
en
dc.subject
solar fuel production
en
dc.subject
II–V semiconductor absorbers
en
dc.subject
electrocatalysts
en
dc.subject
hadow nanosphere lithography
en
dc.subject
nanostructures
en
dc.subject.ddc
500 Natural sciences and mathematics::530 Physics::530 Physics
dc.title
Advancing semiconductor–electrocatalyst systems
dc.type
Wissenschaftlicher Artikel
dc.title.subtitle
application of surface transformation films and nanosphere lithography
dcterms.bibliographicCitation.doi
10.1039/C8FD00003D
dcterms.bibliographicCitation.journaltitle
Faraday Discussions
dcterms.bibliographicCitation.pagestart
523
dcterms.bibliographicCitation.pageend
535
dcterms.bibliographicCitation.volume
208
dcterms.bibliographicCitation.url
https://pubs.rsc.org/en/content/articlelanding/2018/fd/c8fd00003d
refubium.affiliation
Physik
refubium.affiliation.other
Institut für Experimentalphysik
refubium.funding
Open Access Publikation in Allianzlizenz
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1364-5498 (Online)
dcterms.isPartOf.issn
1359-6640 (Print)