dc.contributor.author
Dau, Holger
dc.contributor.author
Pasquini, Chiara
dc.date.accessioned
2019-02-28T12:59:47Z
dc.date.available
2019-02-28T12:59:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23982
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1757
dc.description.abstract
The oxygen-evolution reaction (OER) in the near-neutral pH-regime is of high interest, e.g., for coupling of OER and CO2-reduction in the production of non-fossil fuels. A simple model is proposed that assumes equal proton activities in the catalyst film and the near-surface electrolyte. Equations are derived that describe the limitations relating to proton transport mediated by fluxes of molecular “buffer bases” in the electrolyte. The model explains (1) the need for buffer bases in near-neutral OER and (2) the pH dependence of the catalytic current at high overpotentials. The latter is determined by the concentration of unprotonated buffer bases times an effective diffusion constant, which can be estimated for simple cell geometries from tabulated diffusion coefficients. The model predicts (3) a macroscopic region of increased pH close to the OER electrode and at intermediate overpotentials, (4) a Tafel slope that depends on the reciprocal buffer capacity; both predictions are awaiting experimental verification. The suggested first-order model captures and predicts major trends of OER in the near-neutral pH, without accounting for proton-transport limitations at the catalyst–electrolyte interface and within the catalyst material, but the full quantitative agreement may require refinements. The suggested model also may be applicable to further electrocatalytic processes. View Full-Text
en
dc.format.extent
11 Seiten
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
electrocatalysis
en
dc.subject
mass transport limitation
en
dc.subject
oxygen-evolution reaction
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Modelling the (Essential) Role of Proton Transport by Electrolyte Bases for Electrochemical Water Oxidation at Near-Neutral pH
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
20
dcterms.bibliographicCitation.doi
10.3390/inorganics7020020
dcterms.bibliographicCitation.journaltitle
Inorganics
dcterms.bibliographicCitation.number
2
dcterms.bibliographicCitation.volume
7
dcterms.bibliographicCitation.url
https://doi.org/10.3390/inorganics7020020
refubium.affiliation
Physik
refubium.funding
Institutional Participation
refubium.funding.id
MDPI kostenfrei
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2304-6740