dc.contributor.author
Mohsenzadeh, Yalda
dc.contributor.author
Mullin, Caitlin
dc.contributor.author
Lahner, Benjamin
dc.contributor.author
Cichy, Radoslaw M.
dc.contributor.author
Oliva, Aude
dc.date.accessioned
2019-02-15T11:05:32Z
dc.date.available
2019-02-15T11:05:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23907
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1682
dc.description.abstract
To build a representation of what we see, the human brain recruits regions throughout the visual cortex in cascading sequence. Recently, an approach was proposed to evaluate the dynamics of visual perception in high spatiotemporal resolution at the scale of the whole brain. This method combined functional magnetic resonance imaging (fMRI) data with magnetoencephalography (MEG) data using representational similarity analysis and revealed a hierarchical progression from primary visual cortex through the dorsal and ventral streams. To assess the replicability of this method, we here present the results of a visual recognition neuro-imaging fusion experiment and compare them within and across experimental settings. We evaluated the reliability of this method by assessing the consistency of the results under similar test conditions, showing high agreement within participants. We then generalized these results to a separate group of individuals and visual input by comparing them to the fMRI-MEG fusion data of Cichy et al (2016), revealing a highly similar temporal progression recruiting both the dorsal and ventral streams. Together these results are a testament to the reproducibility of the fMRI-MEG fusion approach and allows for the interpretation of these spatiotemporal dynamic in a broader context.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
spatiotemporal neural dynamics
en
dc.subject
dorsal and ventral streams
en
dc.subject
multivariate pattern analysis
en
dc.subject
representational similarity analysis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::500 Naturwissenschaften::500 Naturwissenschaften und Mathematik
dc.title
Reliability and Generalizability of Similarity-Based Fusion of MEG and fMRI Data in Human Ventral and Dorsal Visual Streams
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2019-02-15T07:54:00Z
dcterms.bibliographicCitation.articlenumber
8
dcterms.bibliographicCitation.doi
10.3390/vision3010008
dcterms.bibliographicCitation.journaltitle
Vision
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
3
dcterms.bibliographicCitation.url
https://doi.org/10.3390/vision3010008
refubium.affiliation
Erziehungswissenschaft und Psychologie
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2411-5150