dc.contributor.author
Reidelbach, Marco
dc.contributor.author
Weber, Marcus
dc.contributor.author
Imhof, Petra
dc.date.accessioned
2019-02-05T12:45:32Z
dc.date.available
2019-02-05T12:45:32Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23865
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1642
dc.description.abstract
The transfer of protons through proton translocating channels is a complex process, for which direct samplings of different protonation states and side chain conformations in a transition network calculation provide an efficient, bias-free description. In principle, a new transition network calculation is required for every unsampled change in the system of interest, e.g. an unsampled protonation state change, which is associated with significant computational costs. Transition networks void of or including an unsampled change are termed unperturbed or perturbed, respectively. Here, we present a prediction method, which is based on an extensive coarse-graining of the underlying transition networks to speed up the calculations. It uses the minimum spanning tree and a corresponding sensitivity analysis of an unperturbed transition network as initial guess and refinement parameter for the determination of an unknown, perturbed transition network. Thereby, the minimum spanning tree defines a sub-network connecting all nodes without cycles and minimal edge weight sum, while the sensitivity analysis analyzes the stability of the minimum spanning tree towards individual edge weight reductions. Using the prediction method, we are able to reduce the calculation costs in a model system by up to 80%, while important network properties are maintained in most predictions.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
transfer of protons
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
Prediction of perturbed proton transfer networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
e0207718
dcterms.bibliographicCitation.doi
10.1371/journal.pone.0207718
dcterms.bibliographicCitation.journaltitle
PLOS One
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.volume
13
dcterms.bibliographicCitation.url
https://doi.org/10.1371/journal.pone.0207718
refubium.affiliation
Physik
refubium.funding
Institutional Participation
refubium.funding.id
PLOSOne
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin und der DFG gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access