dc.contributor.author
Breitenbach, Romy
dc.date.accessioned
2019-01-30T13:55:06Z
dc.date.available
2019-01-30T13:55:06Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23844
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1624
dc.description.abstract
An der Grenzschicht zwischen einer festen Oberfläche und der umgebenden Luft wachsende subaerische Biofilme (SAB) zeichnen sich durch eine erhöhte Toleranz gegenüber extremen Umweltbedingungen und dem Eintrag von Bioziden aus. Dieser Schutz vor äußeren Umwelteinflüssen wird vornehmlich durch den Beitrag von extrazellulären polymeren Substanzen (EPS) und Pigmenten, wie Melanin und Carotinoiden, vieler unterschiedlicher Organismen gewährleistet. Deren Synthese wird wiederum durch intrazelluläre Botenstoffe reguliert. Das Cyanobakterium Nostoc punctiforme und der mikrokoloniale Pilz Knufia petricola, als Partner eines etablierten SAB-Modells und Vertreter zweier typischer Organismengruppen in SAB, wurden genutzt, um Botenstoffe und Pigmente genetisch zu manipulieren und die Biofilmmatrix dieser Mutanten strukturell zu untersuchen. In dieser Arbeit konnten erstmals die EPS beider Organismen extrahiert und die Struktur der extrazellulären Polysaccharide beschrieben werden. Daneben wurden die extrazellulären Polysaccharide von K. petricola Wildtyp mit denen verschiedener Pigmentmutanten verglichen. Das Fehlen des Schutzpigmentes Melanin führte zu einer ausgeprägteren extrazellulären Matrix in den Biofilmen. Gleichzeitig änderte sich die Struktur der extrazellulären Polysaccharide. Während der Wildtyp zu ~80% ein α-Glucan und zu ~20% ein α/β-Galaktomannan sekretierte, war der Anteil des Galaktomannans bei den Melaninmutanten erhöht. Das Ausschalten der Carotinoid-Synthese hatte jedoch keinen Einfluss auf die Beschaffenheit der extrazellulären Polysaccharide. Ein deutlich komplexeres extrazelluläres Polysaccharid aus acht verschiedenen Monosaccharid-Einheiten bildete N. punctiforme. Durch die Überproduktion des bakteriellen sekundären Botenstoffes c-di-GMP konnte zudem ein grundlegender Einfluss auf die Reaktion des Cyanobakteriums gegenüber externen Signalen und die damit verbundene Zelldifferenzierung gezeigt werden. Ein artifiziell erhöhtes c-di-GMP-Level in den Zellen führte zur Ausbildung eines sessilen Lebensstils durch Hemmung der Differenzierung motiler Hormogonien und vermehrte Produktion von EPS. Die Struktur der extrazellulären Polysaccharide wurde dadurch nicht verändert. Neben der strukturellen Analyse konnten die Veränderungen der extrazellulären Matrix beider Organismen zusätzlich durch mikroskopische Methoden visualisiert werden. Beide Organismen steuern komplexe Polymere, deren Produktion maßgeblich mit intrazellulären Faktoren verknüpft ist, zu der extrazellulären Matrix des Modellbiofilms bei.
de
dc.format.extent
XL, 149 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
Extrazelluläre Polysaccharide
de
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Biochemische und physiologische Charakterisierung der extrazellulären Matrix eines Modellbiofilms
dc.contributor.gender
female
dc.contributor.firstReferee
Gorbushina, Anna
dc.contributor.furtherReferee
Mutzel, Rupert
dc.date.accepted
2018-09-13
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-23844-9
refubium.affiliation
Biologie, Chemie, Pharmazie
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access