dc.contributor.author
Krumnow, Christian
dc.contributor.author
Zimborás, Zoltán
dc.contributor.author
Eisert, Jens
dc.date.accessioned
2019-01-23T10:24:35Z
dc.date.available
2019-01-23T10:24:35Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23772
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1558
dc.description.abstract
Quantum versions of de Finetti’s theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson’s fermionic central limit theorem.
en
dc.format.extent
15 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
de Finetti theorem
en
dc.subject
Majorana fermionic systems
en
dc.subject
Hudson’s fermionic central limit theorem
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.title
A fermionic de Finetti theorem
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
122204
dcterms.bibliographicCitation.doi
10.1063/1.4998944
dcterms.bibliographicCitation.journaltitle
Journal of Mathematical Physics
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.volume
58
dcterms.bibliographicCitation.url
https://doi.org/10.1063/1.4998944
refubium.affiliation
Physik
refubium.funding
Open Access Publikation in Allianzlizenz
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0022-2488 (Print)
dcterms.isPartOf.issn
1089-7658 (Online)