dc.contributor.author
Krachtus, Dieter
dc.contributor.author
Smith, Jeremy C.
dc.contributor.author
Imhof, Petra
dc.date.accessioned
2019-01-08T11:41:27Z
dc.date.available
2019-01-08T11:41:27Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23653
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1439
dc.description.abstract
Phosphoserine phosphatase (PSP), a member of the haloacid dehalogenase (HAD) superfamily that comprises the vast majority of phosphotransferases, is likely a steady-state regulator of the level of d-serine in the brain. The proposed catalytic cycle of PSP consists of a two-step mechanism: formation of a phospho-enzyme intermediate by phosphate transfer to Asp11 and its subsequent hydrolysis. Our combined quantum mechanical/molecular mechanical (QM/MM) calculations of the reaction pathways favour a dissociative mechanism of nucleophilic substitution via a trigonal-planar metaphosphate-like configuration for both steps, associated with proton transfer to the leaving group or from the nucleophile. This proton transfer is facilitated by active site residue Asp13 that acts as both a general base and a general acid. Free energy calculation on the reaction pathways further support the structural role of the enzymatic environment and the active site architecture. The choice of a proper reaction coordinate along which to bias the free energy calculations can be guided by a projection of the canonical reaction coordinate obtained from a chain-of-state optimisation onto important internal coordinates. View Full-Text
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
phosphoserine phosphatase
en
dc.subject
reaction pathways
en
dc.subject
reaction coordinate
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Quantum Mechanical/Molecular Mechanical Analysis of the Catalytic Mechanism of Phosphoserine Phosphatase
dc.type
Wissenschaftlicher Artikel
dc.date.updated
2018-12-21T14:51:59Z
dcterms.bibliographicCitation.articlenumber
3342
dcterms.bibliographicCitation.doi
10.3390/molecules23123342
dcterms.bibliographicCitation.journaltitle
Molecules
dcterms.bibliographicCitation.number
12
dcterms.bibliographicCitation.volume
23
refubium.affiliation
Physik
refubium.funding
Institutional Participation
refubium.funding.id
MDPI
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien Universität Berlin und der DFG gefördert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1420-3049