dc.contributor.author
Youett, Evgenia
dc.date.accessioned
2018-12-11T07:03:19Z
dc.date.available
2018-12-11T07:03:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23540
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1326
dc.description.abstract
In this thesis we introduce a novel framework for uncertainty quantification in problems with random coefficients. The developed framework utilizes the ideas of multilevel Monte Carlo (MLMC) methods and allows for exploiting the advantages of adaptive finite element techniques. In contrast to the standard MLMC method, where levels are characterized by a hierarchy of uniform meshes, we associate the MLMC levels with a chosen sequence of tolerances. Each deterministic problem corresponding to a MC sample on a given level is then approximated up to the corresponding accuracy. This can be done, for example, using pathwise a posteriori error estimation and adaptive mesh refinement techniques.
We further introduce an adaptive MLMC finite element method for random
linear elliptic problems based on a residual-based a posteriori error estimation technique.
We provide a careful analysis of the novel method based on a generalization
of existing results, for deterministic residual-based error estimation, to the random
setting. We complement our theoretical results by numerical simulations illustrating
the advantages of our approach compared to the standard MLMC finite element
method when applied to problems with random singularities.
en
dc.format.extent
viii, 109 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
random coefficients
en
dc.subject
elliptic problems
en
dc.subject.ddc
500 Natural sciences and mathematics::510 Mathematics::518 Numerical analysis
dc.title
Adaptive Multilevel Monte Carlo Methods for Random Elliptic Problems
dc.contributor.gender
female
dc.contributor.firstReferee
Kornhuber, Ralf
dc.contributor.furtherReferee
Scheichl, Robert
dc.date.accepted
2018-11-26
dc.identifier.urn
urn:nbn:de:kobv:188-refubium-23540-3
refubium.affiliation
Mathematik und Informatik
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access
dcterms.accessRights.proquest
accept