dc.contributor.author
MacQueen, Rowan W.
dc.contributor.author
Liebhaber, Martin
dc.contributor.author
Niederhausen, Jens
dc.contributor.author
Mews, Mathias
dc.contributor.author
Gersmann, Clemens
dc.contributor.author
Jäckle, Sara
dc.contributor.author
Jäger, Klaus
dc.contributor.author
Tayebjee, Murad J. Y.
dc.contributor.author
Schmidt, Timothy W.
dc.contributor.author
Rech, Bernd
dc.contributor.author
Lips, Klaus
dc.date.accessioned
2018-11-23T08:02:16Z
dc.date.available
2018-11-23T08:02:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23236
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1028
dc.description.abstract
Singlet exciton fission is an exciton multiplication process that occurs in certain organic materials, converting the energy of single highly-energetic photons into pairs of triplet excitons. This could be used to boost the conversion efficiency of crystalline silicon solar cells by creating photocurrent from energy that is usually lost to thermalisation. An appealing method of implementing singlet fission with crystalline silicon is to incorporate singlet fission media directly into a crystalline silicon device. To this end, we developed a solar cell that pairs the electron-selective contact of a high-efficiency silicon heterojunction cell with an organic singlet fission material, tetracene, and a PEDOT:PSS hole extraction layer. Tetracene and n-type crystalline silicon meet in a direct organic–inorganic heterojunction. In this concept the tetracene layer selectively absorbs blue-green light, generating triplet pairs that can dissociate or resonantly transfer at the organo-silicon interface, while lower-energy light is transmitted to the silicon absorber. UV photoemission measurements of the organic–inorganic interface showed an energy level alignment conducive to selective hole extraction from silicon by the organic layer. This was borne out by current–voltage measurements of devices subsequently produced. In these devices, the silicon substrate remained well-passivated beneath the tetracene thin film. Light absorption in the tetracene layer created a net reduction in current for the solar cell, but optical modelling of the external quantum efficiency spectrum suggested a small photocurrent contribution from the layer. This is a promising first result for the direct heterojunction approach to singlet fission on crystalline silicon.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
tetracene interlayers
en
dc.subject
Crystalline silicon solar cells
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
dc.title
Crystalline silicon solar cells with tetracene interlayers
dc.type
Wissenschaftlicher Artikel
dc.title.subtitle
the path to silicon-singlet fission heterojunction devices
dcterms.bibliographicCitation.doi
10.1039/c8mh00853a
dcterms.bibliographicCitation.journaltitle
Materials Horizons
dcterms.bibliographicCitation.pagestart
1065
dcterms.bibliographicCitation.pageend
1075
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://pubs.rsc.org/en/Content/ArticleLanding/2018/MH/C8MH00853A#!divAbstract
refubium.affiliation
Physik
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2051-6347 (Print)
dcterms.isPartOf.issn
2051-6355 (Online)