dc.contributor.author
Irving, Katie
dc.contributor.author
Kuemmerlen, Mathias
dc.contributor.author
Kiesel, Jens
dc.contributor.author
Kakouei, Karan
dc.contributor.author
Domisch, Sami
dc.contributor.author
Jähnig, Sonja C.
dc.date.accessioned
2018-11-20T13:01:55Z
dc.date.available
2018-11-20T13:01:55Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23226
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-1018
dc.description.abstract
Hydrological variables are among the most influential when analyzing or modeling stream ecosystems. However, available hydrological data are often limited in their spatiotemporal scale and resolution for use in ecological applications such as predictive modeling of species distributions. To overcome this limitation, a regression model was applied to a 1 km gridded stream network of Germany to obtain estimated daily stream flow data (m3 s−1) spanning 64 years (1950–2013). The data are used as input to calculate hydrological indices characterizing stream flow regimes. Both temporal and spatial validations were performed. In addition, GLMs using both the calculated and observed hydrological indices were compared, suggesting that the predicted flow data are adequate for use in predictive ecological models. Accordingly, we provide estimated stream flow as well as a set of 53 hydrological metrics at 1 km grid for the stream network of Germany. In addition, we provide an R script where the presented methodology is implemented, that uses globally available data and can be directly applied to any other geographical region.
en
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.subject
high-resolution streamflow
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete Wissenschaften
dc.title
A high-resolution streamflow and hydrological metrics dataset for ecological modeling using a regression model
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.articlenumber
180224
dcterms.bibliographicCitation.doi
10.1038/sdata.2018.224
dcterms.bibliographicCitation.journaltitle
Scientific Data
dcterms.bibliographicCitation.volume
5
dcterms.bibliographicCitation.url
https://doi.org/10.1038/sdata.2018.224
refubium.affiliation
Biologie, Chemie, Pharmazie
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2052-4463