dc.contributor.author
Loi, Vu Van
dc.contributor.author
Busche, Tobias
dc.contributor.author
Tedin, Karsten
dc.contributor.author
Bernhardt, Jörg
dc.contributor.author
Wollenhaupt, Jan
dc.contributor.author
Huyen, Nguyen Thi Thu
dc.contributor.author
Weise, Christoph
dc.contributor.author
Kalinowski, Jörn
dc.contributor.author
Wahl, Marcus C.
dc.contributor.author
Fulde, Marcus
dc.contributor.author
Antelmann, Haike
dc.date.accessioned
2018-10-02T07:54:46Z
dc.date.available
2018-10-02T07:54:46Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23027
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-825
dc.description.abstract
Aims:Staphylococcus aureus is a major human pathogen and has to cope with reactive oxygen and chlorine species (ROS, RCS) during infections, which requires efficient protection mechanisms to avoid destruction. Here, we have investigated the changes in the RNA-seq transcriptome by the strong oxidant sodium hypochlorite (NaOCl) in S. aureus USA300 to identify novel redox-sensing mechanisms that provide protection under infection conditions.
Results: NaOCl stress caused an oxidative stress response in S. aureus as indicated by the induction of the PerR, QsrR, HrcA, and SigmaB regulons in the RNA-seq transcriptome. The hypR-merA (USA300HOU_0588-87) operon was most strongly upregulated under NaOCl stress, which encodes for the Rrf2-family regulator HypR and the pyridine nucleotide disulfide reductase MerA. We have characterized HypR as a novel redox-sensitive repressor that controls MerA expression and directly senses and responds to NaOCl and diamide stress via a thiol-based mechanism in S. aureus. Mutational analysis identified Cys33 and the conserved Cys99 as essential for NaOCl sensing, while Cys99 is also important for repressor activity of HypR in vivo. The redox-sensing mechanism of HypR involves Cys33-Cys99 intersubunit disulfide formation by NaOCl stress both in vitro and in vivo. Moreover, the HypR-controlled flavin disulfide reductase MerA was shown to protect S. aureus against NaOCl stress and increased survival in J774A.1 macrophage infection assays.
Conclusion and Innovation: Here, we identified a new member of the widespread Rrf2 family as redox sensor of NaOCl stress in S. aureus that uses a thiol/disulfide switch to regulate defense mechanisms against the oxidative burst under infections in S. aureus. Antioxid. Redox Signal. 29, 615–636.
en
dc.format.extent
22 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
de
dc.subject
Staphylococcus aureus
en
dc.subject
redox-sensing regulator
en
dc.subject
hypochlorite stress
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::579 Mikroorganismen, Pilze, Algen
de
dc.title
Redox-Sensing Under Hypochlorite Stress and Infection Conditions by the Rrf2-Family Repressor HypR in Staphylococcus aureus
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.doi
10.1089/ars.2017.7354
dcterms.bibliographicCitation.journaltitle
Antioxidants & Redox Signaling
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.pagestart
615
dcterms.bibliographicCitation.pageend
636
dcterms.bibliographicCitation.volume
29
dcterms.bibliographicCitation.url
https://doi.org/10.1089/ars.2017.7354
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.affiliation.other
Institut für Biologie / Arbeitsbereich Mikrobiologie
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1523-0864