dc.contributor.author
Imber, Marcel
dc.contributor.author
Nguyen, Thi Thu Huyen
dc.contributor.author
Pietrzyk-Brzezinska, Agnieszka J.
dc.contributor.author
Loi, Vu Van
dc.contributor.author
Hillion, Melanie
dc.contributor.author
Bernhardt, Jörg
dc.contributor.author
Thärichen, Lena
dc.contributor.author
Kolšek, Katra
dc.contributor.author
Saleh, Malek
dc.contributor.author
Hamilton, Chris J.
dc.contributor.author
Adrian, Lorenz
dc.contributor.author
Gräter, Frauke
dc.contributor.author
Wahl, Markus C.
dc.contributor.author
Antelmann, Haike
dc.date.accessioned
2018-10-01T14:45:16Z
dc.date.available
2018-10-01T14:45:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/23026
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-824
dc.description.abstract
Aims: Bacillithiol (BSH) is the major low-molecular-weight thiol of the human pathogen Staphylococcus aureus. In this study, we used OxICAT and Voronoi redox treemaps to quantify hypochlorite-sensitive protein thiols in S. aureus USA300 and analyzed the role of BSH in protein S-bacillithiolation.
Results: The OxICAT analyses enabled the quantification of 228 Cys residues in the redox proteome of S. aureus USA300. Hypochlorite stress resulted in >10% increased oxidation of 58 Cys residues (25.4%) in the thiol redox proteome. Among the highly oxidized sodium hypochlorite (NaOCl)-sensitive proteins are five S-bacillithiolated proteins (Gap, AldA, GuaB, RpmJ, and PpaC). The glyceraldehyde-3-phosphate (G3P) dehydrogenase Gap represents the most abundant S-bacillithiolated protein contributing 4% to the total Cys proteome. The active site Cys151 of Gap was very sensitive to overoxidation and irreversible inactivation by hydrogen peroxide (H2O2) or NaOCl in vitro. Treatment with H2O2 or NaOCl in the presence of BSH resulted in reversible Gap inactivation due to S-bacillithiolation, which could be regenerated by the bacilliredoxin Brx (SAUSA300_1321) in vitro. Molecular docking was used to model the S-bacillithiolated Gap active site, suggesting that formation of the BSH mixed disulfide does not require major structural changes.
Conclusion and Innovation: Using OxICAT analyses, we identified 58 novel NaOCl-sensitive proteins in the pathogen S. aureus that could play protective roles against the host immune defense and include the glycolytic Gap as major target for S-bacillithiolation. S-bacillithiolation of Gap did not require structural changes, but efficiently functions in redox regulation and protection of the active site against irreversible overoxidation in S. aureus. Antioxid. Redox Signal. 28, 410–430.
en
dc.format.extent
21 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by-nc/4.0/
de
dc.subject
Staphylococcus aureus
en
dc.subject
S-bacillithiolation
en
dc.subject
thiol-redox proteomics
en
dc.subject
bacilliredoxin
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::579 Mikroorganismen, Pilze, Algen
de
dc.title
Protein S-Bacillithiolation Functions in Thiol Protection and Redox Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase Gap in Staphylococcus aureus Under Hypochlorite Stress
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.doi
10.1089/ars.2016.6897
dcterms.bibliographicCitation.journaltitle
Antioxidants & Redox Signaling
dcterms.bibliographicCitation.number
6
dcterms.bibliographicCitation.pagestart
410
dcterms.bibliographicCitation.pageend
430
dcterms.bibliographicCitation.volume
28
dcterms.bibliographicCitation.url
https://doi.org/10.1089/ars.2016.6897
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.affiliation.other
Institut für Biologie / Arbeitsbereich Mikrobiologie
![Dieser Normdateneintrag wurde von einer Benutzerin oder einem Benutzer als gültig bestätigt.](/cache_0fdaa16ecf2e120b3856a5a937c7ad56/themes/FuCD/images/authority_control/invisible.gif)
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1557-7716