dc.contributor.author
Galdadas, Ioannis
dc.contributor.author
Lovera, Silvia
dc.contributor.author
Pérez-Hernández, Guillermo
dc.contributor.author
Barnes, Melissa D.
dc.contributor.author
Healy, Jess
dc.contributor.author
Afsharikho, Hamidreza
dc.contributor.author
Woodford, Neil
dc.contributor.author
Bonomo, Robert A.
dc.contributor.author
Gervasio, Francesco L.
dc.contributor.author
Haider, Shozeb
dc.date.accessioned
2018-09-24T10:07:33Z
dc.date.available
2018-09-24T10:07:33Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22992
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-790
dc.description.abstract
The rise of multi-drug resistance in bacterial pathogens is one of the grand challenges facing medical science. A major concern is the speed of development of β-lactamase-mediated resistance in Gram-negative species, thus putting at risk the efficacy of the most recently approved antibiotics and inhibitors, including carbapenems and avibactam, respectively. New strategies to overcome resistance are urgently required, which will ultimately be facilitated by a deeper understanding of the mechanisms that regulate the function of β-lactamases such as the Klebsiella Pneumoniae carbapenemases (KPCs). Using enhanced sampling computational methods together with site-directed mutagenesis, we report the identification of two “hydrophobic networks” in the KPC-2 enzyme, the integrity of which has been found to be essential for protein stability and corresponding resistance. Present throughout the structure, these networks are responsible for the structural integrity and allosteric signaling. Disruption of the networks leads to a loss of the KPC-2 mediated resistance phenotype, resulting in restored susceptibility to different classes of β-lactam antibiotics including carbapenems and cephalosporins. The ”hydrophobic networks” were found to be highly conserved among class-A β-lactamases, which implies their suitability for exploitation as a potential target for therapeutic intervention.
en
dc.format.extent
13 S.
de
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de
dc.subject
Computational biophysics
en
dc.subject
Protein function predictions
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik::530 Physik
de
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
de
dc.title
Defining the architecture of KPC-2 Carbapenemase
de
dc.type
Wissenschaftlicher Artikel
de
dc.title.subtitle
identifying allosteric networks to fight antibiotics resistance
de
dcterms.bibliographicCitation.articlenumber
12916
dcterms.bibliographicCitation.doi
10.1038/s41598-018-31176-0
dcterms.bibliographicCitation.journaltitle
Scientific Reports
dcterms.bibliographicCitation.volume
8
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41598-018-31176-0
de
refubium.affiliation
Mathematik und Informatik
de
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2045-2322