dc.contributor.author
Hohmann, Louisa
dc.contributor.author
Holtmann, Jana
dc.contributor.author
Eid, Michael
dc.date.accessioned
2018-09-12T07:47:16Z
dc.date.available
2018-09-12T07:47:16Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22834
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-633
dc.description.abstract
This simulation study assessed the statistical performance of a skew t mixture latent state-trait (LST) model for the analysis of longitudinal data. The model aims to identify interpretable latent classes with class-specific LST model parameters. A skew t-distribution within classes is allowed to account for non-normal outcomes. This flexible
function covers heavy tails and may reduce the risk of identifying spurious classes, e.g., in case of outliers. Sample size, number of occasions and skewness of the trait variable were varied. Generally, parameter estimation accuracy increases with increasing numbers of observations and occasions. Larger bias compared to other parameters occurs for parameters referring to the skew t-distribution and variances of the latent trait variables. Standard error estimation accuracy shows diffuse patterns across conditions and parameters. Overall model performance is acceptable for large conditions, even though none of the models is free from bias. The application of the skew t mixture model in case of large numbers of occasions and observations may be possible, but results should be treated with caution. Moreover, the skew t approach may be useful for other mixture models.
en
dc.format.extent
25 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de
dc.subject
mixture modeling
en
dc.subject
skew t-distribution
en
dc.subject
latent state-trait analysis
en
dc.subject
longitudinal data
en
dc.subject
non-normality
en
dc.subject.ddc
100 Philosophie und Psychologie::150 Psychologie::156 Vergleichende Psychologie
de
dc.title
Skew t Mixture Latent State-Trait Analysis: A Monte Carlo Simulation Study on Statistical Performance
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.articlenumber
1323
dcterms.bibliographicCitation.doi
10.3389/fpsyg.2018.01323
dcterms.bibliographicCitation.journaltitle
Frontiers in Psychology
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.3389/fpsyg.2018.01323
de
refubium.affiliation
Erziehungswissenschaft und Psychologie
de
refubium.affiliation.other
Arbeitsbereich Methoden und Evaluation

de
refubium.funding
Frontiers
refubium.funding
Institutional Participation
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1664-1078