dc.contributor.author
Donten-Bury, Maria
dc.contributor.author
Weber, Andrzej
dc.date.accessioned
2018-09-05T06:55:30Z
dc.date.available
2018-09-05T06:55:30Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22799
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-597
dc.description.abstract
We study properties of the Hirzebruch class of quotient singularities ℂ n /G, where G is a finite matrix group. The main result states that the Hirzebruch class coincides with the Molien series of G under suitable substitution of variables. The Hirzebruch class of a crepant resolution can be described specializing the orbifold elliptic genus constructed by Borisov and Libgober. It is equal to the combination of Molien series of centralizers of elements of G. This is an incarnation of the McKay correspondence. The results are illustrated with several examples, in particular of 4-dimensional symplectic quotient singularities.
en
dc.format.extent
35 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de
dc.subject
Hirzebruch class
en
dc.subject
McKay correspondence
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
de
dc.title
Equivariant Hirzebruch classes and Molien series of quotient singularities
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.journaltitle
Transformation Groups
dcterms.bibliographicCitation.number
3
dcterms.bibliographicCitation.pagestart
671
dcterms.bibliographicCitation.pageend
705
dcterms.bibliographicCitation.volume
23
dcterms.bibliographicCitation.url
https://doi.org/10.1007/s00031-017-9452-7
de
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1531-586X
dcterms.isPartOf.issn
1083-4362