dc.contributor.author
Tornow, Florian
dc.contributor.author
Preusker, René
dc.contributor.author
Domenech, Carlos
dc.contributor.author
Henken, Cintia K. Carbajal
dc.contributor.author
Testorp, Sören
dc.contributor.author
Fischer, Jürgen
dc.date.accessioned
2018-08-29T05:26:11Z
dc.date.available
2018-08-29T05:26:11Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22782
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-578
dc.description.abstract
We investigated whether Top-of-Atmosphere Shortwave (TOA SW) anisotropy—essential to convert satellite-based instantaneous TOA SW radiance measurements into TOA SW fluxes—is sensitive to cloud-top effective radii and cloud-topped water vapor. Using several years of CERES SSF Edition 4 data—filtered for overcast, horizontally homogeneous, low-level and single-layer clouds of cloud optical thickness 10—as well as broadband radiative transfer simulations, we built refined empirical Angular Distribution Models (ADMs). The ADMs showed that anisotropy fluctuated particularly around the cloud bow and cloud glory (up to 2.9–8.0%) for various effective radii and at highest and lowest viewing zenith angles under varying amounts of cloud-topped moisture (up to 1.3–6.4%). As a result, flux estimates from refined ADMs differed from CERES estimates by up to 20 W m−2 at particular combinations of viewing and illumination geometry. Applied to CERES cross-track observation of January and July 2007—utilized to generate global radiation budget climatologies for benchmark comparisons with global climate models—we found that such differences between refined and CERES ADMs introduced large-scale biases of 1–2 W m−2 and on regional levels of up to 10 W m−2. Such biases could be attributed in part to low cloud-top effective radii (about 8 μm) and low cloud-topped water vapor (1.7 kg m−2) and in part to an inopportune correlation of viewing and illumination conditions with temporally varying effective radii and cloud-topped moisture, which failed to compensate towards vanishing flux bias. This work may help avoid sampling biases due to discrepancies between individual samples and the median cloud-top effective radii and cloud-top moisture conditions represented in current ADMs.
en
dc.format.extent
16 S.
de
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de
dc.subject
energy budget
en
dc.subject
broadband radiative transfer simulations
en
dc.subject
cloud effective radius
en
dc.subject
upper-tropospheric humidity
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::550 Geowissenschaften
de
dc.title
Top-of-Atmosphere Shortwave Anisotropy over Liquid Clouds
de
dc.type
Wissenschaftlicher Artikel
de
dc.title.subtitle
Sensitivity to Clouds’ Microphysical Structure and Cloud-Topped Moisture
de
dcterms.bibliographicCitation.articlenumber
256
dcterms.bibliographicCitation.doi
10.3390/atmos9070256
dcterms.bibliographicCitation.journaltitle
Atmosphere
dcterms.bibliographicCitation.number
7
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.3390/atmos9070256
de
refubium.affiliation
Geowissenschaften
de
refubium.funding
Institutional Participation
de
refubium.funding.id
MDPI
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2073-4433