dc.contributor.author
Brinkert, Katharina
dc.contributor.author
Richter, Matthias H.
dc.contributor.author
Akay, Ömer
dc.contributor.author
Liedtke, Janine
dc.contributor.author
Giersig, Michael
dc.contributor.author
Fountaine, Katherine T.
dc.contributor.author
Lewerenz, Hans-Joachim
dc.date.accessioned
2018-07-27T13:09:47Z
dc.date.available
2018-07-27T13:09:47Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22570
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-376
dc.description.abstract
Long-term space missions require extra-terrestrial production of storable, renewable energy. Hydrogen is ascribed a crucial role for transportation, electrical power and oxygen generation. We demonstrate in a series of drop tower experiments that efficient direct hydrogen production can be realized photoelectrochemically in microgravity environment, providing an alternative route to existing life support technologies for space travel. The photoelectrochemical cell consists of an integrated catalyst-functionalized semiconductor system that generates hydrogen with current densities >15 mA/cm2 in the absence of buoyancy. Conditions are described adverting the resulting formation of ion transport blocking froth layers on the photoelectrodes. The current limiting factors were overcome by controlling the micro- and nanotopography of the Rh electrocatalyst using shadow nanosphere lithography. The behaviour of the applied system in terrestrial and microgravity environment is simulated using a kinetic transport model. Differences observed for varied catalyst topography are elucidated, enabling future photoelectrode designs for use in reduced gravity environments.
en
dc.format.extent
8 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de
dc.subject
hydrogen generation
en
dc.subject
Chemical engineering
en
dc.subject
Electrocatalysis
en
dc.subject
Nanoscale materials
en
dc.subject
Photocatalysis
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::541 Physikalische Chemie
de
dc.title
Efficient solar hydrogen generation in microgravity environment
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.articlenumber
2527
dcterms.bibliographicCitation.doi
10.1038/s41467-018-04844-y
dcterms.bibliographicCitation.journaltitle
Nature Communications
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
https://doi.org/10.1038/s41467-018-04844-y
de
refubium.affiliation
Physik
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2041-1723