dc.contributor.author
Banyassady, Bahareh
dc.contributor.author
Korman, Matias
dc.contributor.author
Mulzer, Wolfgang
dc.contributor.author
Renssen, André van
dc.contributor.author
Roeloffzen, Marcel
dc.contributor.author
Seiferth, Paul
dc.contributor.author
Stein, Yannik
dc.date.accessioned
2018-07-27T09:29:24Z
dc.date.available
2018-07-27T09:29:24Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22555
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-361
dc.description.abstract
Let P
be a planar set of n sites in general position. For k∈{1,…,n−1}, the Voronoi diagram of order k for P is obtained by subdividing the plane into cells such that points in the same cell have the same set of nearest k neighbors in P. The (nearest site) Voronoi diagram (NVD) and the farthest site Voronoi diagram (FVD) are the particular cases of k=1 and k=n−1, respectively. For any given K∈{1,…,n−1}, the family of all higher-order Voronoi diagrams of order k=1,…,K for P can be computed in total time O(nK2+nlogn) using O(K2(n−K)) space [Aggarwal et al., DCG'89; Lee, TC'82]. Moreover, NVD and FVD for P can be computed in O(nlogn) time using O(n)
space [Preparata, Shamos, Springer'85].
For s∈{1,…,n}
, an s-workspace algorithm has random access to a read-only array with the sites of P in arbitrary order. Additionally, the algorithm may use O(s) words, of Θ(logn)
bits each, for reading and writing intermediate data. The output can be written only once and cannot be accessed or modified afterwards.
We describe a deterministic s
-workspace algorithm for computing NVD and FVD for P that runs in O((n2/s)logs) time. Moreover, we generalize our s-workspace algorithm so that for any given K∈O(s√), we compute the family of all higher-order Voronoi diagrams of order k=1,…,K for P in total expected time O(n2K5s(logs+K2O(log∗K))) or in total deterministic time O(n2K5s(logs+KlogK)). Previously, for Voronoi diagrams, the only known s-workspace algorithm runs in expected time O((n2/s)logs+nlogslog∗s) [Korman et al., WADS'15] and only works for NVD (i.e., k=1). Unlike the previous algorithm, our new method is very simple and does not rely on advanced data structures or random sampling techniques.
en
dc.format.extent
22 Seiten
de_DE
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de_DE
dc.subject
Voronoi diagram
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
de_DE
dc.title
Improved time-space trade-offs for computing Voronoi diagrams
de_DE
dc.type
Wissenschaftlicher Artikel
de_DE
dcterms.bibliographicCitation.doi
10.20382/jocg.v9i1a6
dcterms.bibliographicCitation.journaltitle
Journal of Computational Geometry
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
9
dcterms.bibliographicCitation.url
http://dx.doi.org/10.20382/jocg.v9i1a6
de_DE
refubium.affiliation
Mathematik und Informatik
de_DE
refubium.affiliation.other
Institut für Informatik
de_DE
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
de_DE
refubium.resourceType.isindependentpub
no
de_DE
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1920-180X