dc.contributor.author
Meul, Stefanie
dc.contributor.author
Langematz, Ulrike
dc.contributor.author
Kröger, Philipp
dc.contributor.author
Oberländer-Hayn, Sophie
dc.contributor.author
Jöckel, Patrick
dc.date.accessioned
2018-07-02T13:53:38Z
dc.date.available
2018-07-02T13:53:38Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22403
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-212
dc.description.abstract
Using a state-of-the-art chemistry–climate model we investigate the future change in stratosphere–troposphere exchange (STE) of ozone, the drivers of this change, as well as the future distribution of stratospheric ozone in the troposphere. Supplementary to previous work, our focus is on changes on the monthly scale. The global mean annual influx of stratospheric ozone into the troposphere is projected to increase by 53 % between the years 2000 and 2100 under the RCP8.5 greenhouse gas scenario. The change in ozone mass flux (OMF) into the troposphere is positive throughout the year with maximal increase in the summer months of the respective hemispheres. In the Northern Hemisphere (NH) this summer maximum STE increase is a result of increasing greenhouse gas (GHG) concentrations, whilst in the Southern Hemisphere(SH) it is due to equal contributions from decreasing levels of ozone depleting substances (ODS) and increasing GHG concentrations. In the SH the GHG effect is dominating in the winter months. A large ODS-related ozone increase in the SH stratosphere leads to a change in the seasonal breathing term which results in a future decrease of the OMF into the troposphere in the SH in September and October. The resulting distributions of stratospheric ozone in the troposphere differ for the GHG and ODS changes due to the following: (a) ozone input occurs at different regions for GHG- (midlatitudes) and ODS-changes (high latitudes); and (b) stratospheric ozone is more efficiently mixed towards lower tropospheric levels in the case of ODS changes, whereas tropospheric ozone loss rates grow when GHG concentrations rise. The comparison between the moderate RCP6.0 and the extreme RCP8.5 emission scenarios reveals that the annual global OMF trend is smaller in the moderate scenario, but the resulting change in the contribution of ozone with stratospheric origin (O3s) to ozone in the troposphere is of comparable magnitude in both scenarios. This is due to the larger tropospheric ozone precursor emissions and hence ozone production in the RCP8.5 scenario.
en
dc.format.extent
18 Seiten
de_DE
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de_DE
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
de_DE
dc.title
Future changes in the stratosphere-to-troposphere ozone mass flux and the contribution from climate change and ozone recovery
de_DE
dc.type
Wissenschaftlicher Artikel
de_DE
dc.identifier.sepid
64874
dcterms.bibliographicCitation.doi
10.5194/acp-18-7721-2018
dcterms.bibliographicCitation.journaltitle
Atmospheric Chemistry and Physics
dcterms.bibliographicCitation.number
10
dcterms.bibliographicCitation.pagestart
7721
dcterms.bibliographicCitation.pageend
7738
dcterms.bibliographicCitation.volume
18
dcterms.bibliographicCitation.url
https://doi.org/10.5194/acp-18-7721-2018
de_DE
refubium.affiliation
Geowissenschaften
de_DE
refubium.affiliation.other
Institut für Meteorologie
de_DE
refubium.funding
Institutional Participation
refubium.funding.id
Copernicus
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien Universität Berlin.
refubium.resourceType.isindependentpub
no
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1680-7324
dcterms.isPartOf.issn
1680-7316