dc.contributor.author
Schmoranzer, Jan
dc.date.accessioned
2018-06-29T15:09:21Z
dc.date.available
2002-11-28T00:00:00.649Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22244
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-79
dc.description
Dissertation
Titelblatt und Inhalt
ReadMeVideo
Videos3
Video3.3
Video3.3b
Video3.4a
Videos4
Video4.3a
Video4.3d
Video4.5b
Video4.5c
Video4.6a
Video4.6b
Video4.7a
Video4.7c, slow
Video4.7c
Video4.7c, end, slow
Video4.7c, end
Video4.9b
Videos5
Video5.2a, nonpol
Video5.2a, pol
Video5.2b, nonpol
Video5.2b, pol
Video5.2c
Video5.4a
Video5.4b
Video5.5
Video5.6b
Video5.6c
Videos7
Video7.3a, slow
Video7.3a
Video7.3c, slow
Video7.3c
dc.description.abstract
The last stage of the constitutive secretory pathway is the delivery and
fusion of post-Golgi transport vesicles (carriers) to the plasma membrane.
However, it is still unclear where at the plasma membrane these carriers fuse,
in a living cell. In this work we used total internal reflection fluorescence
microscopy (TIR-FM) to study the delivery and fusion of post-Golgi carriers,
as well as of recycling vesicles from the endosomal compartment, to the cell
surface in live cells. TIR-FM is suited to image fluorescent molecules near
the cell-substrate interphase, since it selectively illuminates the contact
surface of cells. One aim of this work was to establish a quantitative method
for the microscopic detection of single exocytic fusion events. Following the
localization of fusion we answered basic, previously unresolved, questions in
the field of membrane traffic. 1\. Imaging fusion of single post-Golgi
carriers. A TIR-FM system was optimized to image exocytosis of single post-
Golgi carriers. By labeling the carriers with a GFP-tagged membrane protein
(vesicular stomatitis virus glycoprotein, VSVG), quantitative criteria for the
microscopic detection of single carrier fusion events were established for the
first time. Quantitative analysis of time-lapse images could clearly
distinguish fusion of the carriers from both movement of carriers relative to
the plasma membrane as well as lysis of carriers. The flattening of the
carriers into the plasma membrane as well as the subsequent diffusion of the
membrane cargo into the plasma membrane was resolved. The duration of the
flattening process was found to depend on the size of the carrier,
distinguishing small spherical from large tubular carriers. 2\. Role of
microtubules in post-Golgi traffic of fibroblasts. The simul-taneous imaging
of post-Golgi carriers and microtubules using a novel dual-color TIR-FM system
showed that post-Golgi carriers are transported along microtubules to the
fusion sites at the plasma membrane. The data strongly suggested that the
carriers are capable of undergoing fusion while still attached to the
microtubules and that the carriers do not have to reach the end of the
microtubules in order to fuse. In contrast to stationary fibroblasts,
migrating fibroblasts were shown to have a microtubule-mediated mechanism for
polarized insertion of post-Golgi carriers (here LDL-receptor-GFP) close to
the leading edge. Disrupting the microtubules restricted this directed
delivery of the carriers to regions of the plasma membrane close to the Golgi
complex, making the distribution of fusion sites in stationary and migrating
cells indistinguishable. Disrupting the microtubules also decreased the
overall fusion frequency, increased the frequency of "partial" fusions, and
increased the amount of cargo delivered per fusion. We conclude that the
microtubule cytoskeleton is necessary for the domain-specific delivery of
post-Golgi membrane cargo in fibroblasts. 3\. Role of microtubules in post-
Golgi traffic of polarized epithelial cells. Time-lapse fluorescence
microscopy was used to analyze the delivery of apical and basolateral membrane
proteins to the cell surface in both non-polarized and polarized epithelial
cells. We demonstrated that post-Golgi carriers containing either apical or
basolateral membrane proteins fuse to the basal membrane in non-polarized
cells. Upon polarization, exocytosis of all carriers to the basal membrane was
abrogated. Basolateral carriers were seen to fuse to sites at the lateral
membrane, while apical carriers presumably fused to the apical membrane. This
selective targeting is concomitant with redistribution of the t-SNAREs,
syntaxin 3 and 4, upon polarization. Furthermore, we showed that both the
targeted exocytosis of apical proteins and the exclusive localization of
syntaxin 3 at the apical plasma membrane are dependent on intact microtubules
in polarized epithelial cells. In contrast, targeted exocytosis of basolateral
proteins and the basolateral distribution of syntaxin 4 and sec6 are
maintained independently of microtubules in polarized cells. 4\. Insulin-
regulated recycling of glucose transporter. We studied the insulin-regulated
release of the glucose transporter (GLUT4) from the endosomal recycling
compartment (ERC) in live cells. We show that GLUT4 is retained within the
transferrin receptor-containing general ERC in fibroblasts. Using dual-color
TIR-FM, we demonstrate that the transferrin receptor and GLUT4 are transported
from the ERC in separate vesicles. This provides the first functional evidence
for the formation of distinct classes of vesicles from the ERC. We propose
that GLUT4 is dynamically retained within the ERC in fibroblasts because it is
concentrated in vesicles that form more slowly than those that transport
transferrin receptor.
de
dc.description.abstract
Der Transport von Post-Golgi-Vesikeln und deren Fusion mit der Plasmamembran
sind die finalen Prozesse bei der konstitutiven Sekretion in lebenden Zellen.
Der Transportweg zum Ort der Fusion dieser Vesikel mit der Plasmamembran wurde
bisher nicht ausreichend untersucht. In der vorliegenden Arbeit wurde
Totalreflexions-Fluoreszenzmikroskopie (TIR-FM) genutzt, um Transport und
Fusion von Post-Golgi-Vesikeln, wie auch von Vesikeln des endosomalen
"Recycling" Kompartiments, zu untersuchen. TIR-FM is speziell dafür geeignet,
fluoreszente Moleküle am Zell-Substrat-Übergang bildhaft darzustellen, weil
die Kontaktfläche der Zelle selektiv angeregt wird. Ein Ziel dieser Arbeit war
es, eine quantitative Methode zur mikroskopischen Detektion einzelner
Ereignisse bei der Exozytose zu etablieren. Aufbauend auf der Lokalisierung
der Fusionen von Post-Golgi-Vesikeln wurden grundlegende offene Fragen auf dem
Gebiet des Vesikeltransports beantwortet. 1\. Mikroskopische Darstellung von
Fusionsereignissen einzelner Post-Golgi-Transportvesikel. Ein TIR-FM-Systems
wurde optimiert, um die Exozytose einzelner Post-Golgi-Vesikel zu detektieren.
Indem die Vesikel mit einem Membranprotein (vesikuläre stomatische virale
Glykoprotein, VSVG), gekoppelt an GFP, markiert wurden, konnten erstmalig
quantitative Kriterien für die mikroskopische Detektion von einzelnen Fusionen
etabliert werden. Durch quantitative Bildanalyse des zeitlichen Ablaufes
konnten die Fusionen sowohl von der Bewegung relativ zur Plasmamembran als
auch von der lichtinduzierten Lyse unterschieden werden. Der Einbau der
Vesikelmembran in die Plasmamembran und die darauffolgende Diffusion der
Membranproteine konnten zeitlich aufgelöst werden. Kleinere, sphärische und
größere, tubuläre Vesikel wurden anhand der Dauer des vesikulären
Einbauprozesses in die Plasmamembran unterschieden. 2\. Funktion von
Mikrotubuli im Post-Golgi-Vesikeltransport von Fibroblasten. Die gleichzeitige
Beobachtung von Post-Golgi-Vesikeln und Mikrotubuli durch die Verwendung eines
neuartigen Zweifarben-TIR-FM-Systems zeigte, daß die Vesikel an Mikrotubuli
zum Ort ihrer Fusion transportiert werden. Dabei können die Vesikel noch zur
Zeit der Fusion an die Mikrotubuli gebunden sein und müssen für die Fusion
nicht notwendigerweise bis an das Ende der Mikrotubuli transportiert werden.
Weiterhin zeigten unsere Ergebnisse, daß Exozytose von Vesikeln in wandernden
Fibroblasten, im Gegensatz zu stationären Fibroblasten, bevorzugt in der Nähe
des führenden Lamellipodiums ("leading edge") stattfindet. Nach
Depolymerisierung der Mikrotubuli wurde dieser gerichtete Transport des
Membranproteins (hier LDL-Rezeptor-GFP) unterbrochen und wandernde
Fibroblasten konnten anhand der örtlichen Verteilung der Fusionen nicht mehr
von stationären unterschieden werden. Die Depolymerisierung der Mikrotubuli
führte außerdem zur Senkung der Fusionsfrequenz, zum Anstieg "unvollständiger"
Fusionen und zum Anstieg der Menge an Membranproteinen, die während einzelner
Fusionen an die Plasmamembran abgegeben wurden. Wir schließen daraus, daß
Microtubuli für den gerichteten Transport von Membranproteinen in Post-Golgi-
Vesikeln in Fibroblasten notwendig sind. 3\. Funktion von Mikrotubuli im Post-
Golgi-Vesikeltransport von polari-sierten Epithelialzellen. Mittels
zeitaufgelöster Fluoreszenzmikroskopie habe wir den Transport von apikalen und
basolateralen Membranproteinen zur Plasmamembran sowohl in unpolarisierten als
auch in polarisierten Epithelialzellen untersucht. Unsere Resultate zeigten,
daß in unpolarisierten Zellen sowohl apikale als auch basolaterale Post-Golgi-
Vesikel an der basalen Zellmembran fusionieren. Nach Polarisation der Zellen
fand die basale Exozytose beider Vesikel nicht mehr statt. Stattdessen
fusionierten basolaterale Vesikel direkt zu Regionen an der lateralen Membran,
während apikale Vesikel zur apikalen Plasmamembran transportiert wurden.
Dieser selektive Transport fand nach der Polarisation der Zellen statt,
parallel zur Umverteilung der t-SNAREs (Syntaxin 3 und 4). Weitere Ergebnisse
zeigten, daß die exklusive Lokalisierung von Syntaxin 3 und apikalen
Membranproteinen intakte Mikrotubuli benötigt. Im Gegensatz dazu, ist die
gerichtete Exozytose von basolateralen Membranproteinen und die Verteilung von
Syntaxin 4 und sec6 in polarisierten Zellen unabhängig von dem Zustand der
Mikrotubuli. 4\. Insulinabhängiges ?Recycling? des Glukosetransporters. Die
insulin-abhängige Freigabe des Glukosetransporters GLUT4 vom endosomalen
?Recycling? Kompartiment (ERC für ?endosomal recycling compartment?) wurde
untersucht. Die Ergebnisse zeigten, daß GLUT4 in Fibroblasten dynamisch in dem
generellen ERC zurückgehalten wird, das auch den Transferrin-Rezeptor enthält.
Mittels Zweifarben-TIR-FM demonstrieren wir, daß der Transferrin-Rezeptor und
GLUT4 in separaten Vesikeln vom ERC zur Plasmamembran transportiert werden.
Damit wurde der erste funktionellen Beweis für die Formation separater Vesikel
vom ERC geliefert. Der langsame, insulinabhängige Transport der GLUT4-Vesikel
kann dadurch erklärt werden, dass GLUT4 in Vesikel konzentriert wird, die sich
langsamer bilden als Vesikel, die den Transferrin-Rezeptor beinhalten.
de
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
evanescent wave
dc.subject
green fluorescent protein
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
Imaging Single Fusion Events at the Plasma Membrane using Total Internal
Reflection Fluorescence Microscopy - Applications in Membrane Traffic
dc.contributor.firstReferee
Prof. Dr. Ralf Erdmann
dc.contributor.furtherReferee
Prof. Dr. Sanford M. Simon (Rockefeller Univ.)
dc.date.accepted
2002-06-10
dc.date.embargoEnd
2002-12-02
dc.identifier.urn
urn:nbn:de:kobv:188-fudissthesis000000000785-7
dc.title.translated
Mikroskopie von einzelnen Fusionen an der Plasmamembrane mittels
Totalreflexions-Fluoreszenzmikroskopie - Anwendungen im Bereich
Vesikeltransport
de
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDISS_thesis_000000000785
refubium.mycore.transfer
http://www.diss.fu-berlin.de/2002/260/
refubium.note.author
Die zur Arbeit gehörenden Videos sind im Format AVI und umfassen zusammen 440
MB. Bitte nur mit breitbandigen Verbindungen abrufen.
refubium.mycore.derivateId
FUDISS_derivate_000000003819
refubium.mycore.derivateId
FUDISS_derivate_000000000785
dcterms.accessRights.dnb
free
dcterms.accessRights.openaire
open access