dc.contributor.author
Hirt, Mirjam
dc.contributor.author
Schielicke, Lisa
dc.contributor.author
Müller, Annette
dc.contributor.author
Névir, Peter
dc.date.accessioned
2018-06-21T11:07:19Z
dc.date.available
2018-06-21T11:07:19Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/22214
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-50
dc.description.abstract
We investigate a reduced point vortex model for statistical and dynamical analyses of atmospheric blocking phenomena. Thereby, we consider High-over-low and Omega blocking as relative equilibria of two and three point vortices. Under certain conditions, such point vortex systems move westward opposing the mean westerly flow and hence can become stationary. Based on the kinematic vorticity number, two novel, independent methods, the contour and the trapezoid method, are introduced in order to identify the vortices that form the blocking pattern, their local positions and circulation magnitudes. While the contour method takes into account the observed stationarity of blocking, the trapezoid method minimizes the total circulation of the vortex system following point vortex theory. Using an instantaneous blocking index, a total number of 347 blocking periods were identified in NCEP-NCAR Reanalysis data for the Euro-Atlantic region during the time period 1990–2012. This procedure provides the basis to corroborate the applicability of the point vortex model to atmospheric blocking in a statistical framework. The calculated translation speed of point vortex systems associated with the atmospheric blocking appears to match the zonal mean velocity reasonably well. This model explains the stationary behaviour of blocking patterns. A comparison between the theoretical and a statistical model further reveals that the circulation of the blocking high follows the principles of the point vortex model to a large extent. However, the low-pressure systems behave more variable. Moreover, the stability of point vortex equilibria is analysed regarding the relative distances by considering linear stability analysis and simulations. This reveals that the point vortex blocking model corresponds to an unstable saddle point. Furthermore, we take viscosity and a Brownian motion into account to simulate the influence of the smaller, subgrid-scale disturbances. As a result, a clustering near the equilibrium state emerges indicating the persistence of the atmospheric blocking pattern.
en
dc.format.extent
20 Seiten
de
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
de
dc.subject
Atmospheric blocking
en
dc.subject
point vortices
en
dc.subject
kinematic vorticity number
en
dc.subject
stability analysis
en
dc.subject
instantaneous blocking index
en
dc.subject
vortex identification
en
dc.subject
vortex pattern recognition
en
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie::551 Geologie, Hydrologie, Meteorologie
de
dc.title
Statistics and dynamics of blockings with a point vortex model
de
dc.type
Wissenschaftlicher Artikel
de
dcterms.bibliographicCitation.articlenumber
1458565
dcterms.bibliographicCitation.doi
10.1080/16000870.2018.1458565
dcterms.bibliographicCitation.journaltitle
Tellus A: Dynamic Meteorology and Oceanography
dcterms.bibliographicCitation.number
1
dcterms.bibliographicCitation.volume
70
dcterms.bibliographicCitation.url
https://doi.org/10.1080/16000870.2018.1458565
de
refubium.affiliation
Geowissenschaften
de
refubium.affiliation.other
Institut für Meteorologie
de
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
de
refubium.resourceType.isindependentpub
no
de
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1600-0870