dc.contributor.author
Hagensieker, Ron
dc.contributor.author
Waske, Björn
dc.date.accessioned
2018-06-08T11:12:14Z
dc.date.available
2018-02-20T12:26:47.308Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21801
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25089
dc.description.abstract
Earth Observation (EO) data plays a major role in supporting surveying
compliance of several multilateral environmental treaties, such as UN-REDD+
(United Nations Reducing Emissions from Deforestation and Degradation). In
this context, land cover maps of remote sensing data are the most commonly
used EO products and development of adequate classification strategies is an
ongoing research topic. However, the availability of meaningful multispectral
data sets can be limited due to cloud cover, particularly in the tropics. In
such regions, the use of SAR systems (Synthetic Aperture Radar), which are
nearly independent form weather conditions, is particularly promising. With an
ever-growing number of SAR satellites, as well as the increasing accessibility
of SAR data, potentials for multi-frequency remote sensing are becoming
numerous. In our study, we evaluate the synergistic contribution of
multitemporal L-, C-, and X-band data to tropical land cover mapping. We
compare classification outcomes of ALOS-2, RADARSAT-2, and TerraSAR-X datasets
for a study site in the Brazilian Amazon using a wrapper approach. After
preprocessing and calculation of GLCM texture (Grey Level Co-Occurence), the
wrapper utilizes Random Forest classifications to estimate scene importance.
Comparing the contribution of different wavelengths, ALOS-2 data perform best
in terms of overall classification accuracy, while the classification of
TerraSAR-X data yields higher accuracies when compared to the results achieved
by RADARSAT-2. Moreover, the wrapper underlines potentials of multi-frequency
classification as integration of multi-frequency images is always preferred
over multi-temporal, mono-frequent composites. We conclude that, despite
distinct advantages of certain sensors, for land cover classification, multi-
sensoral integration is beneficial.
en
dc.format.extent
16 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
land cover classification
dc.subject.ddc
500 Naturwissenschaften und Mathematik::550 Geowissenschaften, Geologie
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::620 Ingenieurwissenschaften::621 Angewandte Physik
dc.title
Evaluation of Multi-Frequency SAR Images for Tropical Land Cover Mapping
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Remote Sensing 10 (2018), 2
dcterms.bibliographicCitation.doi
10.3390/rs10020257
dcterms.bibliographicCitation.url
http://doi.org/10.3390/rs10020257
refubium.affiliation
Geowissenschaften
de
refubium.affiliation.other
Institut für Geographische Wissenschaften
refubium.funding
Institutional Participation
refubium.funding.id
MDPI
refubium.mycore.fudocsId
FUDOCS_document_000000029060
refubium.note.author
Die Publikation wurde aus Open Access Publikationsgeldern der Freien
Universität Berlin und der DFG gefördert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009444
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2072-4292