dc.contributor.author
Agarwal, Animesh
dc.contributor.author
Rabideau, Brooks D.
dc.contributor.author
Ismail , Ahmed E.
dc.date.accessioned
2018-06-08T11:09:34Z
dc.date.available
2018-04-26T09:56:55.702Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21719
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-25007
dc.description.abstract
We present a hierarchical coarse-graining framework for modeling semidilute
polymer solutions, based on the wavelet-accelerated Monte Carlo (WAMC) method.
This framework forms a hierarchy of resolutions to model polymers at length
scales that cannot be reached via atomistic or even standard coarse-grained
simulations. Previously, it was applied to simulations examining the structure
of individual polymer chains in solution using up to four levels of coarse-
graining (Ismail et al., J. Chem. Phys., 2005, 122, 234901 and Ismail et al.,
J. Chem. Phys., 2005, 122, 234902), recovering the correct scaling behavior in
the coarse-grained representation. In the present work, we extend this method
to the study of polymer solutions, deriving the bonded and non-bonded
potentials between coarse-grained superatoms from the single chain statistics.
A universal scaling function is obtained, which does not require recalculation
of the potentials as the scale of the system is changed. To model semi-dilute
polymer solutions, we assume the intermolecular potential between the coarse-
grained beads to be equal to the non-bonded potential, which is a reasonable
approximation in the case of semidilute systems. Thus, a minimal input of
microscopic data is required for simulating the systems at the mesoscopic
scale. We show that coarse-grained polymer solutions can reproduce results
obtained from the more detailed atomistic system without a significant loss of
accuracy.
en
dc.format.extent
20 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
multiscale simulations
dc.subject
structure-based coarse-graining
dc.subject
wavelet transform
dc.subject
Monte Carlo simulation of self-avoiding polymer chains
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::510 Mathematik
dc.subject.ddc
500 Naturwissenschaften und Mathematik::510 Mathematik::518 Numerische Analysis
dc.title
Multiresolution Modeling of Semidilute Polymer Solutions
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Computation 5 (2017), 44
dc.title.subtitle
Coarse-Graining Using Wavelet-Accelerated Monte Carlo
dcterms.bibliographicCitation.doi
10.3390/computation5040044
dcterms.bibliographicCitation.url
http://doi.org/10.3390/computation5040044
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.mycore.fudocsId
FUDOCS_document_000000029634
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009674
dcterms.accessRights.openaire
open access