dc.contributor.author
Seifert, Tom
dc.contributor.author
Martens, U.
dc.contributor.author
Günther, S.
dc.contributor.author
Schoen, M. A. W.
dc.contributor.author
Radu, F.
dc.contributor.author
Chen, X. Z.
dc.contributor.author
Lucas, I.
dc.contributor.author
Ramos, R.
dc.contributor.author
Aguirre, M. H.
dc.contributor.author
Algarabel, P. A.
dc.contributor.author
Anadón, A.
dc.contributor.author
Körner, H. S.
dc.contributor.author
Walowski, J.
dc.contributor.author
Back, C. H.
dc.contributor.author
Ibarra, M. R.
dc.contributor.author
Morellón, L.
dc.contributor.author
Saitoh, E.
dc.contributor.author
Wolf, M.
dc.contributor.author
Song, C.
dc.contributor.author
Uchida, K.
dc.contributor.author
Münzenberg, M.
dc.contributor.author
Radu, I.
dc.contributor.author
Kampfrath, Tobias
dc.date.accessioned
2018-06-08T11:04:20Z
dc.date.available
2018-04-24T10:04:49.353Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21573
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24863
dc.description.abstract
Terahertz emission spectroscopy (TES) of ultrathin multilayers of magnetic and
heavy metals has recently attracted much interest. This method not only
provides fundamental insights into photoinduced spin transport and spin–orbit
interaction at highest frequencies, but has also paved the way for
applications such as efficient and ultrabroadband emitters of terahertz (THz)
electromagnetic radiation. So far, predominantly standard ferromagnetic
materials have been exploited. Here, by introducing a suitable figure of
merit, we systematically compare the strength of THz emission from X/Pt
bilayers with X being a complex ferro-, ferri- and antiferromagnetic metal,
that is, dysprosium cobalt (DyCo5), gadolinium iron (Gd24Fe76), magnetite
(Fe3O4) and iron rhodium (FeRh). We find that the performance in terms of
spin-current generation not only depends on the spin polarization of the
magnet’s conduction electrons, but also on the specific interface conditions,
thereby suggesting TES to be a highly interface-sensitive technique. In
general, our results are relevant for all applications that rely on the
optical generation of ultrafast spin currents in spintronic metallic
multilayers.
en
dc.format.extent
11 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Terahertz spintronics
dc.subject
femtomagnetism
dc.subject
spin Hall effect
dc.subject
spin Seebeck effect
dc.subject
heterostructures
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film
Heterostructures Containing Complex Magnetic Compounds
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
SPIN. - 07 (2017), 03, Artikel Nr. 1740010
dc.identifier.sepid
62130
dcterms.bibliographicCitation.doi
10.1142/S2010324717400100
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1142/S2010324717400100
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000029609
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009654
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2010-3247