dc.contributor.author
Düring, Daniel N.
dc.contributor.author
Ziegler, Alexander
dc.contributor.author
Thompson, Christopher K.
dc.contributor.author
Ziegler, Andreas
dc.contributor.author
Faber, Cornelius
dc.contributor.author
Müller, Johannes
dc.contributor.author
Scharff, Constance
dc.contributor.author
Elemans, Coen PH
dc.date.accessioned
2018-06-08T11:03:35Z
dc.date.available
2018-01-26T15:05:34.755Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21550
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24840
dc.description.abstract
Background: Like human infants, songbirds learn their species-specific
vocalizations through imitation learning. The birdsong system has emerged as a
widely used experimental animal model for understanding the underlying neural
mechanisms responsible for vocal production learning. However, how neural
impulses are translated into the precise motor behavior of the complex vocal
organ (syrinx) to create song is poorly understood. First and foremost, we
lack a detailed understanding of syringeal morphology. Results To fill this
gap we combined non-invasive (high-field magnetic resonance imaging and micro-
computed tomography) and invasive techniques (histology and micro-dissection)
to construct the annotated high-resolution three-dimensional dataset, or
morphome, of the zebra finch (Taeniopygia guttata) syrinx. We identified and
annotated syringeal cartilage, bone and musculature in situ in unprecedented
detail. We provide interactive three-dimensional models that greatly improve
the communication of complex morphological data and our understanding of
syringeal function in general. Conclusions: Our results show that the
syringeal skeleton is optimized for low weight driven by physiological
constraints on song production. The present refinement of muscle organization
and identity elucidates how apposed muscles actuate different syringeal
elements. Our dataset allows for more precise predictions about muscle co-
activation and synergies and has important implications for muscle activity
and stimulation experiments. We also demonstrate how the syrinx can be
stabilized during song to reduce mechanical noise and, as such, enhance
repetitive execution of stereotypic motor patterns. In addition, we identify a
cartilaginous structure suited to play a crucial role in the uncoupling of
sound frequency and amplitude control, which permits a novel explanation of
the evolutionary success of songbirds.
en
dc.format.extent
27 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/2.0/
dc.subject
birdsong system
dc.subject.ddc
500 Naturwissenschaften und Mathematik::590 Tiere (Zoologie)::598 Aves (Vögel)
dc.title
The songbird syrinx morphome: a three-dimensional, high-resolution,
interactive morphological map of the zebra finch vocal organ
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
BMC Biology 11 (2013), 1
dcterms.bibliographicCitation.doi
10.1186/1741-7007-11-1
dcterms.bibliographicCitation.url
http://doi.org/10.1186/1741-7007-11-1
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.affiliation.other
Institut für Biologie / Arbeitsbereich Verhaltensbiologie & Neurophysiologie
refubium.mycore.fudocsId
FUDOCS_document_000000028891
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009379
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
1741-7007