dc.contributor.author
Röhl, Annika
dc.contributor.author
Bockmayr, Alexander
dc.date.accessioned
2018-06-08T10:48:55Z
dc.date.available
2017-12-01T12:57:57.018Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21138
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24435
dc.description.abstract
Constraint-based analysis has become a widely used method to study metabolic
networks. While some of the associated algorithms can be applied to genome-
scale network reconstructions with several thousands of reactions, others are
limited to small or medium-sized models. In 2015, Erdrich et al. introduced a
method called NetworkReducer, which reduces large metabolic networks to
smaller subnetworks, while preserving a set of biological requirements that
can be specified by the user. Already in 2001, Burgard et al. developed a
mixed-integer linear programming (MILP) approach for computing minimal
reaction sets under a given growth requirement.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
constraint-based modeling
dc.subject
metabolic networks
dc.subject
model reduction
dc.subject
mixed-integer linear programming
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::570 Biowissenschaften; Biologie
dc.title
A mixed-integer linear programming approach to the reduction of genome-scale
metabolic networks
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
BMC Bioinformatics. - 18 (2017), Artikel Nr. 2
dcterms.bibliographicCitation.doi
10.1186/s12859-016-1412-z
dcterms.bibliographicCitation.url
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1412-z
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Mathematik
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.funding.id
Open Access Publikationsfonds
refubium.mycore.fudocsId
FUDOCS_document_000000026080
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000007472
dcterms.accessRights.openaire
open access