dc.contributor.author
Bulchandani, Vir B.
dc.contributor.author
Vasseur, Romain
dc.contributor.author
Karrasch, Christoph
dc.contributor.author
Moore, Joel E.
dc.date.accessioned
2018-06-08T10:47:52Z
dc.date.available
2018-04-24T08:19:00.095Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/21098
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24395
dc.description.abstract
The conventional theory of hydrodynamics describes the evolution in time of
chaotic many-particle systems from local to global equilibrium. In a quantum
integrable system, local equilibrium is characterized by a local generalized
Gibbs ensemble or equivalently a local distribution of pseudomomenta. We study
time evolution from local equilibria in such models by solving a certain
kinetic equation, the “Bethe-Boltzmann” equation satisfied by the local
pseudomomentum density. Explicit comparison with density matrix
renormalization group time evolution of a thermal expansion in the XXZ model
shows that hydrodynamical predictions from smooth initial conditions can be
remarkably accurate, even for small system sizes. Solutions are also obtained
in the Lieb-Liniger model for free expansion into vacuum and collisions
between clouds of particles, which model experiments on ultracold one-
dimensional Bose gases.
en
dc.format.extent
11 Seiten
dc.rights.uri
http://journals.aps.org/authors/transfer-of-copyright-agreement
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Solvable Hydrodynamics of Quantum Integrable Systems
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Physical Review Letters. - 119 (2017), 22, S.6 Seiten
dc.identifier.sepid
62154
dcterms.bibliographicCitation.doi
10.1103/PhysRevLett.119.220604
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1103/PhysRevLett.119.220604
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Theoretische Physik
refubium.mycore.fudocsId
FUDOCS_document_000000029601
refubium.note.author
Bei der PDF-Datei handelt es sich um eine Manuskriptversion des Artikels.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009646
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
0031-9007