dc.contributor.author
Kovalev, S.
dc.contributor.author
Green, B.
dc.contributor.author
Golz, T.
dc.contributor.author
Maehrlein, S.
dc.contributor.author
Stojanovic, N.
dc.contributor.author
Fisher, A. S.
dc.contributor.author
Kampfrath, Tobias
dc.contributor.author
Gensch, M.
dc.date.accessioned
2018-06-08T10:44:11Z
dc.date.available
2018-04-24T10:39:23.333Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20988
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24285
dc.description.abstract
Understanding dynamics on ultrafast timescales enables unique and new insights
into important processes in the materials and life sciences. In this respect,
the fundamental pump-probe approach based on ultra-short photon pulses aims at
the creation of stroboscopic movies. Performing such experiments at one of the
many recently established accelerator-based 4th-generation light sources such
as free-electron lasers or superradiant THz sources allows an enormous
widening of the accessible parameter space for the excitation and/or probing
light pulses. Compared to table-top devices, critical issues of this type of
experiment are fluctuations of the timing between the accelerator and external
laser systems and intensity instabilities of the accelerator-based photon
sources. Existing solutions have so far been only demonstrated at low
repetition rates and/or achieved a limited dynamic range in comparison to
table-top experiments, while the 4th generation of accelerator-based light
sources is based on superconducting radio-frequency technology, which enables
operation at MHz or even GHz repetition rates. In this article, we present the
successful demonstration of ultra-fast accelerator-laser pump-probe
experiments performed at an unprecedentedly high repetition rate in the few-
hundred-kHz regime and with a currently achievable optimal time resolution of
13 fs (rms). Our scheme, based on the pulse-resolved detection of multiple
beam parameters relevant for the experiment, allows us to achieve an excellent
sensitivity in real-world ultra-fast experiments, as demonstrated for the
example of THz-field-driven coherent spin precession.
en
dc.format.extent
7 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Probing ultra-fast processes with high dynamic range at 4th-generation light
sources
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Structural Dynamics. - 4 (2017), 2, S.024301 (7 Seiten)
dc.identifier.sepid
62133
dc.title.subtitle
Arrival time and intensity binning at unprecedented repetition rates
dcterms.bibliographicCitation.doi
10.1063/1.4978042
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1063/1.4978042
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000029612
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009657
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2329-7778