We have investigated the bulk and surface properties of the group II metal fluorides CaF 2 , SrF 2 and BaF 2 using periodic density functional theory (DFT) calculations and surface thermodynamics. Our bulk results show that the best agreement with experiment is achieved with the B3LYP and PBE functionals. We determined the relative importance of the low index surfaces in vacuum and found that an fluoride microcrystal exposes only the (111) surface in which the undercoordinated cations are sevenfold coordinated. With methods of ab initio surface thermodynamics, we analyzed the stability of different surfaces under hydrogen fluoride (HF) pressure and determined the presumable shape of the crystals with respect to different HF concentrations and temperatures. In the case of CaF 2 and SrF 2 , the calculated shapes of the crystals agree well with TEM images of fluorolytic sol-gel synthesized nanocrystals at room temperature and high HF concentration