dc.contributor.author
Leger, Stefan
dc.contributor.author
Zwanenburg, Alex
dc.contributor.author
Pilz, Karoline
dc.contributor.author
Lohaus, Fabian
dc.contributor.author
Linge, Annett
dc.contributor.author
Zöphel, Klaus
dc.contributor.author
Kotzerke, Jörg
dc.contributor.author
Schreiber, Andreas
dc.contributor.author
Tinhofer, Inge
dc.contributor.author
Budach, Volker
dc.date.accessioned
2018-06-08T10:42:13Z
dc.date.available
2017-11-16T11:56:39.864Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20913
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24212
dc.description.abstract
Radiomics applies machine learning algorithms to quantitative imaging data to
characterise the tumour phenotype and predict clinical outcome. For the
development of radiomics risk models, a variety of different algorithms is
available and it is not clear which one gives optimal results. Therefore, we
assessed the performance of 11 machine learning algorithms combined with 12
feature selection methods by the concordance index (C-Index), to predict loco-
regional tumour control (LRC) and overall survival for patients with head and
neck squamous cell carcinoma. The considered algorithms are able to deal with
continuous time-to-event survival data. Feature selection and model building
were performed on a multicentre cohort (213 patients) and validated using an
independent cohort (80 patients). We found several combinations of machine
learning algorithms and feature selection methods which achieve similar
results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in
combination with Spearman feature selection. Using the best performing models,
patients were stratified into groups of low and high risk of recurrence.
Significant differences in LRC were obtained between both groups on the
validation cohort. Based on the presented analysis, we identified a subset of
algorithms which should be considered in future radiomics studies to develop
stable and clinically relevant predictive models for time-to-event endpoints.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Cancer imaging
dc.subject
Prognostic markers
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
A comparative study of machine learning methods for time-to-event survival
data for radiomics risk modelling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Scientific Reports. - 7 (2017), Artikel Nr. 13206
dcterms.bibliographicCitation.doi
10.1038/s41598-017-13448-3
dcterms.bibliographicCitation.url
http://www.nature.com/articles/s41598-017-13448-3
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000028489
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009121
dcterms.accessRights.openaire
open access