dc.contributor.author
Rakhymzhan, Asylkhan
dc.contributor.author
Leben, Ruth
dc.contributor.author
Zimmermann, Hanna
dc.contributor.author
Günther, Robert
dc.contributor.author
Mex, Peggy
dc.contributor.author
Reismann, David
dc.contributor.author
Ulbricht, Carolin
dc.contributor.author
Acs, Andreas
dc.contributor.author
Brandt, Alexander U.
dc.contributor.author
Lindquist, Randall L.
dc.contributor.author
Winkler, Thomas H.
dc.contributor.author
Hauser, Anja E.
dc.contributor.author
Niesner, Raluca A.
dc.date.accessioned
2018-06-08T10:42:12Z
dc.date.available
2017-09-08T09:42:02.181Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20911
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24210
dc.description.abstract
Simultaneous detection of multiple cellular and molecular players in their
native environment, one of the keys to a full understanding of immune
processes, remains challenging for in vivo microscopy. Here, we present a
synergistic strategy for spectrally multiplexed in vivo imaging composed of
(i) triple two-photon excitation using spatiotemporal synchronization of two
femtosecond lasers, (ii) a broad set of fluorophores with emission ranging
from blue to near infrared, (iii) an effective spectral unmixing algorithm.
Using our approach, we simultaneously excite and detect seven fluorophores
expressed in distinct cellular and tissue compartments, plus second harmonics
generation from collagen fibers in lymph nodes. This enables us to visualize
the dynamic interplay of all the central cellular players during germinal
center reactions. While current in vivo imaging typically enables recording
the dynamics of 4 tissue components at a time, our strategy allows a more
comprehensive analysis of cellular dynamics involving 8 single-labeled
compartments. It enables to investigate the orchestration of multiple cellular
subsets determining tissue function, thus, opening the way for a mechanistic
understanding of complex pathophysiologic processes in vivo. In the future,
the design of transgenic mice combining a larger spectrum of fluorescent
proteins will reveal the full potential of our method.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Biological fluorescence
dc.subject
Imaging the immune system
dc.subject
Mode-locked lasers
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
Synergistic Strategy for Multicolor Two-photon Microscopy
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Scientific Reports. - 7 (2017), Artikel Nr. 7101
dc.title.subtitle
Application to the Analysis of Germinal Center Reactions In Vivo
dcterms.bibliographicCitation.doi
10.1038/s41598-017-07165-0
dcterms.bibliographicCitation.url
http://www.nature.com/articles/s41598-017-07165-0
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000027896
refubium.note.author
Der Artikel wurde in einer reinen Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000008718
dcterms.accessRights.openaire
open access