dc.contributor.author
Schmid, Martina
dc.contributor.author
Yin, G.
dc.contributor.author
Song, M.
dc.contributor.author
Duan, S.
dc.contributor.author
Heidmann, B.
dc.contributor.author
Sancho-Martinez, D.
dc.contributor.author
Kämmer, S.
dc.contributor.author
Köhler, T.
dc.contributor.author
Manley, P.
dc.contributor.author
Lux-Steiner, Martha
dc.date.accessioned
2018-06-08T10:41:52Z
dc.date.available
2017-03-14T10:16:17.657Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20902
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24201
dc.description.abstract
Publisher’s Note: This paper, originally published on 23 September 2016, was
replaced with a corrected/revised version on 21 December 2016. If you
downloaded the original PDF but are unable to access the revision, please
contact SPIE Digital Library Customer Service for assistance. Light
concentration has proven beneficial for solar cells, most notably for highly
efficient but expensive absorber materials using high concentrations and large
scale optics. Here we investigate light concentration for cost efficient
thinfilm solar cells which show nano- or microtextured absorbers. Our absorber
material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized
record efficiency of 22.6% and which - despite being a polycrystalline thin-
film material - is very tolerant to environmental influences. Taking a
nanoscale approach, we concentrate light in the CIGSe absorber layer by
integrating photonic nanostructures made from dielectric materials. The
dielectric nanostructures give rise to resonant modes and field localization
in their vicinity. Thus when inserted inside or adjacent to the absorber
layer, absorption and efficiency enhancement are observed. In contrast to this
internal absorption enhancement, external enhancement is exploited in the
microscale approach: mm-sized lenses can be used to concentrate light onto
CIGSe solar cells with lateral dimensions reduced down to the micrometer
range. These micro solar cells come with the benefit of improved heat
dissipation compared to the large scale concentrators and promise compact high
efficiency devices. Both approaches of light concentration allow for reduction
in material consumption by restricting the absorber dimension either
vertically (ultra-thin absorbers for dielectric nanostructures) or
horizontally (micro absorbers for concentrating lenses) and have significant
potential for efficiency enhancement.
en
dc.format.extent
7 Seiten
dc.rights.uri
http://www.fu-berlin.de/sites/refubium/rechtliches/Nutzungsbedingungen
dc.subject
chalcopyrite solar cells
dc.subject
ultra-thi absorber
dc.subject
light concentration
dc.subject
micro absorber
dc.subject
optical modeling
dc.subject.ddc
500 Naturwissenschaften und Mathematik::530 Physik
dc.title
Concentrating light in Cu(In,Ga)Se2 solar cells
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
SPIE Proceedings: Next Generation Technologies for Solar Energy Conversion. -
(2016), S.993703
dc.identifier.sepid
55346
dcterms.bibliographicCitation.doi
10.1117/12.2238056
dcterms.bibliographicCitation.url
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2557270
refubium.affiliation
Physik
de
refubium.affiliation.other
Institut für Experimentalphysik
refubium.mycore.fudocsId
FUDOCS_document_000000026551
refubium.note.author
Bei der PDF-Datei handelt es sich um die Manuskriptversion. Die Verlagsversion
ist unter folgender URL erhältlich:
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2557270
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000007893
dcterms.accessRights.openaire
open access