dc.contributor.author
Prasad, Suchita
dc.contributor.author
Achazi, Katharina
dc.contributor.author
Böttcher, Christoph
dc.contributor.author
Haag, Rainer
dc.contributor.author
Sharma, Sunil K.
dc.date.accessioned
2018-06-08T10:41:47Z
dc.date.available
2017-07-05T10:36:57.927Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20900
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24199
dc.description.abstract
Fabrication of self-assembled nanostructures with defined size and morphology
represents a formidable challenge and thus, has gained tremendous momentum in
research because of their potential applications in various biological
systems. Herein, we report on the synthesis of novel non-ionic amphiphiles
using 2,2-di(prop-2-yn-1-yl)propane-1,3-diol as a core further functionalized
with poly(ethylene glycol) monomethyl ether and alkyl chains employing a
chemo-enzymatic approach. Surface tension and fluorescence measurements along
with dynamic light scattering studies revealed that all of the amphiphilic
systems spontaneously self-assemble in aqueous solution, which is further
supplemented by cryogenic transmission electron microscopy. The solubilization
behavior of these systems as evidenced from UV-Vis and fluorescence
spectroscopy and high performance liquid chromatography suggested the
effective encapsulation of hydrophobic entities like Nile red, nimodipine,
curcumin and dexamethasone. A comparative study with a standard excipient,
Cremophor® ELP demonstrated that our nanocarriers exhibited
superior/equivalent solubilization behavior for curcumin. Confocal laser
scanning microscopy revealed efficient uptake of encapsulated dye in the
cytosol of lung cancer cells, thus suggesting, that the reported amphiphilic
systems can transport drugs into cells. A study of cytotoxicity showed that
the synthesized amphiphilic systems are non-cytotoxic at the concentrations
studied. The release profile of encapsulated Nile red incubated with/without a
hydrolase enzyme Candida antarctica lipase demonstrated that the dye is stable
in the amphiphilic nanostructures in the absence of enzyme for up to 12 days,
however, more than 90% release of the dye occurred in 12 days when incubated
with lipase. The results advocate the potential of these nanostructures as
prospective drug delivery vehicles.
en
dc.format.extent
12 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by-nc/3.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie::547 Organische Chemie
dc.title
Fabrication of nanostructures through selfassembly of non-ionic amphiphiles
for biomedical applications
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
RSC Advances.- 7 (2017), S. 22121-22132
dcterms.bibliographicCitation.doi
10.1039/c6ra28654b
dcterms.bibliographicCitation.url
http://dx.doi.org/10.1039/c6ra28654b
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.affiliation.other
Institut für Chemie und Biochemie / Organische Chemie
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000027307
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000008434
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2046-2069