dc.contributor.author
Schirner, Michael
dc.contributor.author
Mclntosh, Anthony Randal
dc.contributor.author
Jirsa, Viktor
dc.contributor.author
Deco, Gustavo
dc.contributor.author
Ritter, Petra
dc.date.accessioned
2018-06-08T10:39:19Z
dc.date.available
2018-03-13T08:52:26.958Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20823
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-24122
dc.description.abstract
The neurophysiological processes underlying non-invasive brain activity
measurements are incompletely understood. Here, we developed a connectome-
based brain network model that integrates individual structural and functional
data with neural population dynamics to support multi-scale neurophysiological
inference. Simulated populations were linked by structural connectivity and,
as a novelty, driven by electroencephalography (EEG) source activity.
Simulations not only predicted subjects' individual resting-state functional
magnetic resonance imaging (fMRI) time series and spatial network topologies
over 20 minutes of activity, but more importantly, they also revealed precise
neurophysiological mechanisms that underlie and link six empirical
observations from different scales and modalities: (1) resting-state fMRI
oscillations, (2) functional connectivity networks, (3) excitation-inhibition
balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI
on short and long time scales, and (6) fMRI power-law scaling. These findings
underscore the potential of this new modelling framework for general inference
and integration of neurophysiological knowledge to complement empirical
studies.
en
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::610 Medizin und Gesundheit
dc.title
Inferring multi-scale neural mechanisms with brain network modelling
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation.doi
10.7554/eLife.28927
dcterms.bibliographicCitation.originalpublishername
eLife
dcterms.bibliographicCitation.volume
7
refubium.affiliation
Charité - Universitätsmedizin Berlin
de
refubium.mycore.fudocsId
FUDOCS_document_000000029292
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009525
dcterms.accessRights.openaire
open access
dcterms.bibliographicCitation.pmid
29308767
dcterms.isPartOf.issn
2050-084X