dc.contributor.author
Boenisch, Franziska
dc.contributor.author
Rosemann, Benjamin
dc.contributor.author
Wild, Benjamin
dc.contributor.author
Dormagen, David
dc.contributor.author
Wario, Fernando
dc.contributor.author
Landgraf, Tim
dc.date.accessioned
2018-06-08T10:32:33Z
dc.date.available
2018-04-11T13:48:22.918Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20609
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23910
dc.description.abstract
Computational approaches to the analysis of collective behavior in social
insects increasingly rely on motion paths as an intermediate data layer from
which one can infer individual behaviors or social interactions. Honey bees
are a popular model for learning and memory. Previous experience has been
shown to affect and modulate future social interactions. So far, no lifetime
history observations have been reported for all bees of a colony. In a
previous work we introduced a recording setup customized to track up to 4,000
marked bees over several weeks. Due to detection and decoding errors of the
bee markers, linking the correct correspondences through time is non-trivial.
In this contribution we present an in-depth description of the underlying
multi-step algorithm which produces motion paths, and also improves the marker
decoding accuracy significantly. The proposed solution employs two classifiers
to predict the correspondence of two consecutive detections in the first step,
and two tracklets in the second. We automatically tracked ~2,000 marked honey
bees over 10 weeks with inexpensive recording hardware using markers without
any error correction bits. We found that the proposed two-step tracking
reduced incorrect ID decodings from initially ~13% to around 2% post-tracking.
Alongside this paper, we publish the first trajectory dataset for all bees in
a colony, extracted from ~3 million images covering 3 days. We invite
researchers to join the collective scientific effort to investigate this
intriguing animal system. All components of our system are open-source.
en
dc.format.extent
10 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Apis mellifera
dc.subject
social insects
dc.subject
lifetime history
dc.subject.ddc
500 Naturwissenschaften und Mathematik::590 Tiere (Zoologie)::595 Arthropoden (Gliederfüßer)
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::571 Physiologie und verwandte Themen
dc.subject.ddc
000 Informatik, Informationswissenschaft, allgemeine Werke::000 Informatik, Wissen, Systeme::006 Spezielle Computerverfahren
dc.title
Tracking All Members of a Honey Bee Colony Over Their Lifetime Using Learned
Models of Correspondence
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Frontiers in Robotics and AI. - 5 (2018), Art. 35
dcterms.bibliographicCitation.doi
10.3389/frobt.2018.00035
dcterms.bibliographicCitation.url
http://dx.doi.org/10.3389/frobt.2018.00035
refubium.affiliation
Mathematik und Informatik
de
refubium.affiliation.other
Institut für Informatik / Dahlem Center for Machine Learning and Robotics
refubium.funding
Institutional Participation
refubium.funding.id
Frontiers
refubium.mycore.fudocsId
FUDOCS_document_000000029560
refubium.note.author
Der Artikel wurde in einer Open-Access-Zeitschrift publiziert.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009622
dcterms.accessRights.openaire
open access