dc.contributor.author
El-Nagar, Gumaa Ali
dc.contributor.author
Hassan, Mohamed A.
dc.contributor.author
Lauermann, Iver
dc.contributor.author
Roth, Christina
dc.date.accessioned
2018-06-08T10:30:01Z
dc.date.available
2018-01-09T08:07:26.565Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20541
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23842
dc.description.abstract
Commercial Pt/C anodes of direct formic acid fuel cells (DFAFCs) get rapidly
poisoned by in-situ generated CO intermediates from formic acid non-faradaic
dissociation. We succeeded in increasing the Pt nanoparticles (PtNPs)
stability and activity for formic acid oxidation (DFAFCs anodic reaction) by
embedding them inside a chitosan matrix obtained from seafood wastes. Atop the
commercial Pt/C, formic acid (FA) is predominantly oxidized via the undesired
poisoning dehydration pathway (14 times higher than the desired
dehydrogenation route), wherein FA is non-faradaically dissociated to CO
resulting in deactivation of the majority of the Pt active-surface sites.
Surprisingly, PtNPs chemical insertion inside a chitosan matrix enhanced their
efficiency for FA oxidation significantly, as demonstrated by their 27 times
higher stability along with ~400 mV negative shift of the FA oxidation onset
potential together with 270 times higher CO poisoning-tolerance compared to
that of the commercial Pt/C. These substantial performance enhancements are
believed to originate from the interaction of chitosan functionalities (e.g.,
NH2 and OH) with both PtNPs and FA molecules improving FA adsorption and
preventing the PtNPs aggregation, besides providing the required oxygen
helping with the oxidative removal of the adsorbed poisoning CO-like species
at low potentials. Additionally, chitosan induced the retrieval of the Pt
surface-active sites by capturing the in-situ formed poisoning CO
intermediates via a so-called “migration mechanism”.
en
dc.format.extent
11 Seiten
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
dc.subject
Electrocatalysis
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.subject.ddc
600 Technik, Medizin, angewandte Wissenschaften::660 Chemische Verfahrenstechnik
dc.title
Efficient Direct Formic Acid Fuel Cells (DFAFCs) Anode Derived from Seafood
waste: Migration Mechanism
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Scientific Reports 7 (2017), Artikel Nr. 17818
dcterms.bibliographicCitation.doi
10.1038/s41598-017-17978-8
dcterms.bibliographicCitation.url
http://doi.org/10.1038/s41598-017-17978-8
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.funding
Deutsche Forschungsgemeinschaft (DFG)
refubium.mycore.fudocsId
FUDOCS_document_000000028722
refubium.note.author
Gefördert durch die DFG und den Open-Access-Publikationsfonds der Freien
Universität Berlin.
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009286
dcterms.accessRights.openaire
open access
dcterms.isPartOf.issn
2045-2322