dc.contributor.author
Cheng, Chong
dc.contributor.author
Zhang, Jianguang
dc.contributor.author
Li, Shuang
dc.contributor.author
Xia, Yi
dc.contributor.author
Nie, Chuanxiong
dc.contributor.author
Shi, Zhenqiang
dc.contributor.author
Cuellar-Camach, Jose Lui
dc.contributor.author
Ma, Nan
dc.contributor.author
Haag, Rainer
dc.date.accessioned
2018-06-08T10:29:36Z
dc.date.available
2018-02-15T10:12:29.916Z
dc.identifier.uri
https://refubium.fu-berlin.de/handle/fub188/20515
dc.identifier.uri
http://dx.doi.org/10.17169/refubium-23818
dc.description.abstract
The capabilities of conductive nanomaterials to be produced in liquid form
with well-defined chemical, physical, and biological properties are highly
important for the construction of next-generation flexible bioelectronic
devices. Although functional graphene nanomaterials can serve as attractive
liquid nanoink platforms for the fabrication of bioelectronics, scalable
synthesis of graphene nanoink with an integration of high colloidal stability,
water processability, electrochemical activity, and especially bioactivity
remains a major challenge. Here, a facile and scalable synthesis of
supramolecular-functionalized multivalent graphene nanoink (mGN-ink) via [2+1]
nitrene cycloaddition is reported. The mGN-ink unambiguously displays a well-
defined and flat 2D morphology and shows good water processability and
bioactivity. The uniquely chemical, physical, and biological properties of
mGN-ink endow the constructed bioelectronic films and nanofibers with high
flexibility and durability, suitable conductivity and electrochemical
activity, and most importantly, good cellular compatibility and a highly
efficient control of stem-cell spreading and orientation. Overall, for the
first time, a water-processable and bioactive mGN-ink is developed for the
design of flexible and electrochemically active bioelectronic composites and
devices, which not only presents manifold possibilities for electronic-
cellular applications but also establishes a new pathway for adapting
macroscopic usages of graphene nanomaterials in bionic, biomedical,
electronic, and even energy fields.
en
dc.rights.uri
http://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc
500 Naturwissenschaften und Mathematik::540 Chemie
dc.subject.ddc
500 Naturwissenschaften und Mathematik::570 Biowissenschaften; Biologie::572 Biochemie
dc.title
A Water-Processable and Bioactive Multivalent Graphene Nanoink for Highly
Flexible Bioelectronic Films and Nanofibers
dc.type
Wissenschaftlicher Artikel
dcterms.bibliographicCitation
Advanced Materials. -30 (2018), 5, Artiel Nr. 1705452
dcterms.bibliographicCitation.url
http://onlinelibrary.wiley.com/doi/10.1002/adma.201705452/abstract;jsessionid=5075119332FB294462A163F651790B04.f03t03
refubium.affiliation
Biologie, Chemie, Pharmazie
de
refubium.mycore.fudocsId
FUDOCS_document_000000029015
refubium.resourceType.isindependentpub
no
refubium.mycore.derivateId
FUDOCS_derivate_000000009422
dcterms.accessRights.openaire
open access